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In this paper a design method was formulated to deal with robustness and performance specifications
for any MIMO linear controller. The controller tuning procedure was expressed as an optimization
problem in which novel time-domain integrals of the weighted squared error and weighted squared
control signals, with initial state zero and inputs not necessarily defined over the Lebesgue normed
space (£, ), were minimized. The control robustness is achieved by constraining the minimization such
that the maximum complex/real ratio of the closed-loop control system eigenvalues was lower than
one. The proposed tuning method was applied in the design of linear controllers with PID structure for a
CSTR with disturbance noise and a nonlinear CSTR with control signal saturations, both reported in
literature. The results show that the proposed control systems surpass the performance and robustness
characteristics of the controllers designed with other reported methods.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

PID algorithm is a linear control action that has been one of the
most successful algorithms in the control theory history. Even
with the introduction of non-linear and robust control theory, the
PID control action has demonstrated good performance and
robustness characteristics for non-linear processes (Tan et al.,
2002a,b; Garcia-Alvarado et al., 2005; Cheng and Chiu, 2008).
Even more, some non-linear controllers have PID configuration,
like the proposed by Alvarez et al. (1989) which structure
corresponds to a PI controller with gain and integral time as
functions of state variables. Furthermore, the robustness proper-
ties of PI and PID algorithms have been demonstrated (Bao et al.,
1999; Alvarez et al,, 1998; Chen et al.,, 2002; Ge et al., 2002;
Toscano, 2005; Ruiz-Lopez et al, 2006; Xiong et al., 2007;
Goncalves et al., 2008). The PID control action is a particular case
of a general linear controller, and therefore a higher order linear
controller must keep and may improve its performance and
robustness characteristics.

A process with a MIMO linear controller may be represented by,

@ =Ax+Biw+Byu (1)
dt
y=Cx+Dyyw+Dpu (2)
d
d—f =AE+ BT+ By 3)
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uU=CE+Dir+Dyy 4)

Where x e R™! is the process state vector, we R™! is the
exogenous input vector (disturbance signals), yeR™' is the
measured output vector (feedback to the controller), u e R is
the control signal vector, & e R*! is the control state vector, and
re R™! is the set point vector. Egs. (1) and (2) represent the state-
space of the process and Eqs. (3) and (4) represent the state-space
of the control algorithm, in which is implicit the error signal
vector ee R™*! =r—y.IfA, B; C;and Dj; are constants, the process is
linear-invariant, otherwise the system may be linear time-
dependent, quasi-linear or non-linear. If A, By, By, C, D1 and D,
are constants the controller is linear. A PID control action with
first order filter can be written in the form of Eqgs. (3) and (4) as
will be shown later.

A common method for designing an optimal controller is by
evaluation of the control signal (u) that minimize a quadratic
performance index with the form,

I= /x[x’Qx+u/Ru]dt (5)
0

or

1= /0 "Iy Qy+u'Ru dt ®6)

In the case where the process is linear, the minimization of Eq. (5)
or (6) can be achieved by applying the Riccati equation. In this
way, the results may be a general linear controller (Engwerda
and Weeren, 2008), or the parameters for a PI algorithm
(Garcia-Alvarado et al., 2005). If the process is non-linear, the
problem may be solved by other techniques, as the Chebyshev
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spectral approximation, and the results are generally non-linear
controllers (El-Kady et al., 2003). However the minimization
of a quadratic performance index does not assure controller
robustness.

Nowadays, one of the most common design methods for an
optimal and robust control of the system represented by Egs. (1)-
(4) is based on solving optimization problems in the Hardy normed
spaces R'H, and RH.. Doyle et al. (1989) showed that a unique
solution for matrices A, B, C and D exists that minimize the
‘Ho-norm of the closed-loop matrix function of Egs. (1)-(4).
Moreover, Doyle et al. (1989) deduced suboptimal solutions that
assure Hy-norm < y; and H-norm < 7y,, where M is the infinite
norm of closed-loop matrix function of Egs. (1)-(4) and y; and 7y,
are any real positive number. Each one of the suboptimal problems,
is solved from the solutions of two Riccati equations. Because
‘H,-norm represents a quadratic performance index, and H.,-norm
represents a robustness index, the suboptimal problems can be
used in order to equilibrate H,/H. norms (that is, the tradeoff
between performance and robustness). Other solutions in
normed spaces RH, and RH., may be obtained from the
application of linear matrix inequalities (LMI) (Chilali et al., 1999).
As example, Saeki (2006) proposed a direct application of LMI for
the MIMO PID controller design as an optimization problem in
which matrix inequalities obtained from a H..-norm condition for
each frequency are approximated by LMIs, and then a sequence of
PID gains is obtained iteratively until reaching a H.,-norm lower
than one.

‘H, /H~ methods have been applied in the design of chemical
engineering process controllers (Bao et al., 1999; Chen et al,,
2002; Ge et al., 2002; Toscano, 2005; Goncalves et al., 2008). Bao
et al. (1999) proposed an application of LMIs for the design of a
MIMO PID controller applied to a distillation column. This study
showed the dependence of transient response of the control
system designed with LMIs on weighting function selection
(Saeki, 2006). Ge et al. (2002), Toscano (2005) and Goncalves
et al. (2008), studied the control of a continuous stirred tank
reactor (CSTR), which dynamic was described by Uppal et al.
(1974). Ge et al. (2002) applied a classical PID algorithm and
founded the control parameters in such way that the #; and .,
norms are kept under a desired value using LMIs. Toscano (2005)
also applied a classical PID algorithm and proposed a simple way
to evaluate the control parameters with robustness character-
istics. Toscano’s method consisted in finding the control para-
meters that minimize the sensitivity function 11S(s)ll., norm
(similarly to Bao et al., 1999) and keep a pseudo-damping factor
in a lower bound. Goncalves et al. (2008) introduced a noise
disturbance in the same CSTR and applied an ISA (Instrument
Society of America) PID configuration with noise filter. The ISA PID
configuration is basically a PI with a weighted derivative action.
They found the set control parameters that minimize a weigh
function of IIT(s)ll; and IT(s)llw. Goncalves et al. (2008) reported
explicitly that their method increase the performance and
robustness of the CSTR control with respect to Ge et al. (2002)
and Toscano (2005) methods. In Section 4, the Goncalves et al.
(2008) control will be described in detail and represented in the
general linear control form Egs. (3) and (4). Chen et al. (2002)
designed a MIMO PI control for a CSTR with two target output
variables, two control signals, and two exogenous inputs via LMIs.
Although the control tuned by Chen et al. (2002) exhibited a good
performance, Ruiz-Lopez et al. (2006) founded another ser of
controls parameters for the same system with better character-
istics for both reference tracking and disturbance rejection. The
method applied by Ruiz-Lopez et al. (2006) represents an
alternative to LMIs that requires lower numerical effort and did
not depend on weighting functions. They showed that the
minimization of the eigenvalues maximal complex/real ratio

(Im/Re) for the closed-loop dynamic characteristic matrix is
equivalent to the minimization of the H.-norm and therefore
imparts robustness properties to the control systems. In order to
assure the controller performance, Ruiz-Lopez et al. (2006)
minimized iteratively the quadratic index in Eq. (6) with R=0,
r=0, w=0 and x(0)=xp#0 which are the most common
conditions used for the minimization of quadratic performance
indexes (Engwerda and Weeren, 2008; Garcia-Alvarado et al.,
2005; El-Kady et al., 2003). However, an important characteristic
of the system defined by Egs. (1)-(3) is that if, r=0, w=0 and
x(0) = xg # 0, then it reduces to an homogeneous state-space, so if
system is internally stable, the state-space trajectories tends to
zero when time approaches infinite even without a control action.
Therefore, the time-domain integral for error and control signals
when the system is subjected to input disturbances and x(0)=0,
may represent better the control performance. That is, the
following quadratic index,

le= [ -y Qur—y)+uRude %
0

for Egs. (1)-(4) and with

r#0¢L,,, w#0¢L,,, and x(0)=0 ®)

The set point (r) and exogenous input (w) were declared non-
elements of Lebesgue normed space (£, ) in order to consider the
inclusion of a step input as forcing function. The analytical
solution of integral (7) under conditions (8) is not reported, and
therefore in this paper such analytical solution was deduced for a
general linear controller and applied in the design of linear
controllers. This design method was expressed as a minimization
problem of the deduced solution for integral (7) subjected to a
constraint in the maximum Im/Re ratio of the closed-loop
control system eigenvalues, as robustness index. The method
was validated by tuning the CSTR SISO control described
by Goncalves et al. (2008) and the CSTR MIMO control
described by Chen et al. (2002) and later improved by
Ruiz-Lopez et al. (2006).

2. Theory

The process defined by Eqgs. (1) and (2) with control declared in
Egs. (3) and (4) can be rewritten as the following closed-loop
equations,

X =[x &] 9
% =AX+Biw+B,r (10)
y:C]X—F D]]W—I— D12r (11)
U=CyX+Dyyw+Dopr (12)
where
A A+ByDyA.Cy B, 45C

n By 41C A+ByA41D12C |°

B1+ByD241D14 By 42Dy
= By A1D1q © 727 | Bi+B,41D1,Dy

Cyi=[41C 41D1Cl, Cy=[D4,1C; 43C]

D11 =[41D11], D12 =[41D12D1], D31 =[D241D11], Doy =[42D4]

A1 =(—D12D>2)7", 4y =(c+D241D13)
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Therefore, the closed-loop transfer matrix (from w and r inputs to
y as output) can be expressed as,

Tuwry() =Cly 1 s5—A) 'B+D withC=[Cq], B=[B;: By],
D=[D1 D12] (13)

Ruiz-Lopez et al. (2006) showed that the minimization of the
maximal Im/Re relation (called ¢,,, ) of eigenvalues of matrix A is
equivalent to the minimization of the #.,-norm of matrix transfer
of Eq. (16) (IITwry(s)lw) and therefore assures the robustness
properties of the control systems. Ruiz-Lopez et al. (2006)
recommended a ¢, value lower than one.

The analytical solution of problem (10)-(12) subjected to
certain given inputs and X(0)=0 is required to solve integral (7). A
forcing function that can approximate a feasible perturbation in
the input or reference signals is a step function, which expressed
in Laplace dominion are given by,

ws)=s"K;, r(s)=s"1K, (14)

where K; e R™! and K, e R™*! contain the magnitude of the step
functions. Under Eq. (17) the input signals are not defined in a
Lebesgue space (W(t),r(t)¢L,.), and therefore if the matrix
transfer of the process does not contain a zero-pole, a controller
with integral action (or a zero pole) is required to guarantee that
e(t)—»0 when t—oo (or e(t)e £, ) as in the PID algorithm. The
solution of Egs. (10)-(12) subject to inputs (14) is,

X =AM I, B1K: + B Ko] (15)
And therefore,

y=CiAT €M~ J[B1K; + BoKo ]+ D11 Ky + D12Ko (16)
u=CyA " [eA —I, (IIB1K; + BaKo]+ Dy Ky + DKo 17)

Quadratic index (10) can be split in two integrals,
T
le= [ -y Qu—y)+uRude =1y +1, (18)
Jo

Each one of the integrals in Eq. (18) may be evaluated for the
servomechanism or regulator problems. In a servomechanism
problem no exogenous inputs are assumed (K;=0), and therefore,

Iy,seruo = /0 (KZ _y)TQ(KZ =Y) dt (1 9)

In a regulator problem no reference changes are assumed (K, = 0),
and therefore,

T
Iy,reg: /0 J’Tdef (20)

The analytical evaluation of integrals (19) and (20) is
summarized in the following theorems.

Theorem 1. For system defined with Eqs. (10)-(12) in minimal
realization, with a zero pole in A, B, C, D, and with A stable (the
whole of its eigenvalues must be in left complex semi plane), the
integral (19) is given by,

}ijgly,servo =K, B, P, B,K; (21)
where P, is obtained by solving the Riccati equation,

A'Py+PyA =—(A~YC,QCA™! (22)
Proof. See Appendix A.

Theorem 2. For system defined by Egs. (10)-(12) in minimal
realization, with a zero pole in A, B, C, D, and with A stable, the

integral (20) is given by,
lim I reg = Ky B} Py B K4 (23)
T—>00

where P, is obtained solving the Riccati Eq. (22)
Proof. See Appendix B.

In the analytical evaluation of I, is necessary to consider that
u(t) may not be in £, under condition given by Eq. (14), and
therefore is possible that I, —»oco when t—oo. Thus, I, must be
evaluated using a finite value for 7. Then, the analytical evaluation
for the performance index of control variables (I,) is obtained by
applying the results of Theorems 1 and 2. The results are,

T
Lyservo = / U'Rudt = Ky B, P, B, K, — K, B, (7Y Pye” B, K,
0

+2(A ) (D21 K2 —CoA ™ BoKoYRCL AT (€471, ) B2 Ko
+(D21K2—Co A7 ByKo Y R(D91 K2 —Co AT BLKo)T (24)

T
e = / WRu dt = K, B, P, B, Ky —K, B, (€7 Pye B, K,
0

+2(A7)(Dg1 Ky —Co AT By Ky YRCL A (€A =y ) By Ky
+(D21K1—C2A B K1 YR(D21 K1 —C2 AT B Ky )T (25)

where P, is obtained solving the Riccati equation
A'Py+P A = —(A~YCL,RC,A™! (26)

Another important performance indicator in a control system is
the capacity to reject noise. This capacity may be simulated with
the response to a unit-impulse (Dirac delta J(t)) in the exogenous
input,

ws)=1, 1(s)=0 wherel eR>*™=[11 ... 1]

Analytical solution of Eq. (10) under these inputs is,

X =eB;1 27
And therefore,

y=C1eMB11+D118(t) (28)

u=Cye™By1+ Dy 8(t) (29)

where: 8(t) e R™*™ =[5(t) 6(t) --- 5(b)]

Under Egs. (28) and (29) the quadratic performance indexes
are finites only if D;;=0, due by the properties of Dirac delta
function,

/ ~ S(05(t) dt = 8(0)— 0o

Then, the quadratic performance indexes only can be evaluated
assuming D1, =0. This assumption is similar to those required by
Doyle et al. (1989) for solving the sub-optimal problems for
'H> /H~ norms. However in the proposed performance evaluation,
this assumption does not represent a loss of generality because in
the case of Dg; #0, its effect would be considered in
Iy servo Iyreg luservo Tureg. Integral (19) may be solved by applying
the principles of Theorems 1 and 2, and assuming D;;=0. The
results are given by,

rlil?o'yvpulse =1B|P,,B1 (30)
TlLrEOIu,pulse =1BP,B;1 31

where Py, and Py, are calculated by solving the following Riccati
equations,

A'Pyp+PypA = —C1QC, 32)
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A'Pyy+PypA = —C,RC, 33)

The quadratic performance indexes deduced in this section
complemented the principle of minimum ¢,,, (Ruiz-Lopez
et al,, 2006) as the basis of a design method for optimal and
robust MIMO linear controllers. The proposed design method is
described in the next section.

3. Controller design method

Summarizing the robustness conditions given by Ruiz-Lopez
et al. (2006), and the quadratic performance indexes deduced in
Section 2, a linear controller with a suitable robustness and
desired performance can be designed from the following
optimization problem,

For the system defined with Eqs. (10)-(12) in minimal
realization, find elements of A, B, C, D such that,

J(A,B,C,D)=w; Iy,seruo +w» Iy,reg +Wsly servo
+ W4Iu,reg + WSIy,pulse + WG’u,pulse —min
subject to

Grax = max<11$8f))> <1vi=1,2,...,(n+k) where |, 4—A|=0
“i

A, contains a zero pole

The trade-off between performance and control effort is fitted
with weights wy, wa, ws, wy, ws and wg. This problem can be
solved using an adequate search method, like the described in
detail by Ruiz-Lopez et al. (2006). Four Riccati equations must be
solved in each iteration (two Riccati equations for both step and
impulse forcing functions), which is similar to a standard H;/He
optimal control (Doyle et al.,, 1989). This procedure defines a
multiobjective optimal control problem that considers the
quadratic performance of error, quadratic performance of control
signal, assures the robustness, and does not require to be defined
over H,/H., normed spaces, or LMIs. The procedure is illustrated
with the design of control systems for two CSTR.

4. Illustrative examples
4.1. A CSTR SISO control with noise

Goncalves et al. (2008) tuned a SISO weighted PID control with
noise filter for a CSTR by minimizing a weighted function of
IT(s)l; and IIT(s)l«. The CSTR and control dynamics were defined
with the following transfer functions,

500b, bo

)= s2+a15+ap dis)+ s2+ai15+ap ue 34
Y(s) =c(s)+n(s) (33)
Table 1

Td4S
pTgs+1

u(s)=kp Tlise(s)—i-e(s)— y(s) 36)
where d is a disturbance (exogenous) input, and 7 is an exogenous
disturbance noise. Goncalves et al. (2008) assumed that 5 is
random, uniformly distributed, and |#| < 0.01. Supported on the
work of Uppal et al. (1974), Goncalves et al. (2008) state three sets
of values (S={ay,ag,bp}) for the CSTR transfer function, which
depend on the CSTR operation point. The three sets, for time unit
in seconds are,

$1=1{0.01248,5.862,0.037073},
S3={9.251,22.19,0.04612}

Egs. (34) and (35) can be represented in state-space form
(Egs. (1) and (2)) with the following matrices,

d 0 1 B 0 0 B 0
w= n ’ = —-ag —-aq |’ 1= 500b0 0 2= bo ’

CGi=[10], Dy;=[01], Diz=[0], (37

S> =1{2.674,10.97,0.041073,

Eq. (36) is the ISA PID configuration, which has weighted PID
structure with a noise filter p = 1/N (where A is a noise filtering
constant Goncalves et al., 2008), and it can be written in state-
space form (Eqgs. (3) and (4)) with the following matrices,

0 1 B Bz
A= {0 —]/Pfd} B]_|:ﬁ21 - B2= :822}
C=[10], Di=[fnl D2=I[Ppl (38)
where
Bor=kp,  Por=—kp (1 + %), Bi1 =[-Bo1 +kp(1+pTa/T)]/ P74

B2 =—[Boz +kp(1+pTa/T1/0Tas  Par = (P11 +kp/T1)/pTas
Baz =—(Bra+kp/T)/pTa

The proposed indexes: Egs. (21), (23), (24), (25), (30) and (31)
with Q=I=1, R=1=1 (there is only one response and one
control signal), ¢ .., and 1Ty y(s)ll, calculated with the control
parameters evaluated by Goncalves et al. (2008) are listed in
Table 1.

The proposed method was applied by solving the optimization
problem defined in Section 3 for the kp, 7, 74, and p=1/N
elements of matrices A, B, C, and D in Eq. (38). The same
optimization method described in the first example was used. The
model defined by parameters presented in Set 1 (S;) was selected
for the optimization because it has the worst eigenvalues, that is
the ¢..x of the open-loop characteristic matrix (A) was the
highest among the three sets. The noise filter value (V) was taken
between 3 and 10 (Goncalves et al.,, 2008). The optimization
begun from k, =12605, 7;=1.27, 14=0.074, and N =9.93 as
initial guess which produces ¢,,,, <0.2. The weights w; were

Quadratic indexes (I) robustness criterion (¢,,.,) and H,-norm obtained for different control parameters of the CSTR.

Method Control parameters

Indexes, ¢,,x and Hy,-norm

Goncalves et al. (2008) kp =7297, 1;=0.0315,

179 =0.5772, N=10,

Proposed k, =3789, 1;=0.557,

7q=0.115, N =4.9062

Iy reg = 3.48 x 107, I, 50 = 120,
Tyreg = 2.51 x 108, I puse = 7.56 x 101,

Ly servo = 0.103, Iy servo = 3.59 x 10°
Bz =828 Ty y(5)ll oo = 4.47

Iyreg =5.03 x 1072, I pyuee = 16.7,

Ty reg = 2.50 x 108, I puse = 1.31 x 10'°,
Ly servo = 0.0814, Iy servo = 9.21 x 10°
Bmax = U Twry(S)llog = 1.52
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elected in such way that all the elements of objective function
were in the same magnitude order. The final values of these
weights were: w;=5x10", wy;=1x10%, w;=2x107,
Ws=2x107% w5 =5 x 1072, wg =3 x 107'°. In Table 1 are listed
the optimal results. As in the first illustrative example, a higher
value of one performance index, in this case Iy .z, was allowed to
obtain smaller values of the control signals indexes. In fact, in this
example only Iy, resulted in a greater value than the results of
Goncalves et al. (2008). It is important to emphasize that the
proposed method control parameters reduced I, py g in almost
two magnitude orders. Another important result is that the
reduction of ¢, produced a decrease of I Tyry(s)lo. For the
performance test, a dynamic simulation of the proposed and
Goncalves et al. (2008) controls for the CSTR at the three
operation points (Sq, S;, S3), was developed applying the random
noise |#| < 0.01, a unit step in set point, an a unit step disturbance

1.50 . : : :
—— Goncalves et al. (2008)
1.25 ——===This work
;

1.00 + prece S g =
- 1 Lo
s
3 o075 |
5
(@]

0.50

025

000 1 L 1 1

0 2 4 6 8 10
Time (s)

Fig. 1. Dynamic simulation of y for the controlled CSTR as response of unit step in
set point r, a unit step disturbance in d applied at 5s, and random uniformly
distributed noise || < 0.01. Results for the three sets (S, Sz, S3).

—— Goncalves et al. (2008) ||
———— This work
g ‘ ity 1 l
T ‘ i ‘ "IIJ| i il ‘ "|’||1
=) Wy || | r ‘
e ] | ' i J
§ I
IS
o
&) ]
0 2 4 6 8 10
Time (s)

Fig. 2. Dynamic simulation of u for the controlled CSTR as response of unit step in
set point r, a unit step disturbance in d applied at 5s, and random uniformly
distributed noise || < 0.01. Results for set S;.

from the fifth second. Simulated output signals are plotted in
Fig. 1. As it can be seen in this graph, the proposed method
performs with both lower overshot and stabilizing time than the
reported by Goncalves et al. (2008) for a set point tracking. The
regulatory test, from second 5 onward, show that Goncalves et al.
(2008) control performs better than the proposed one as it was
expected form the Iy, results. However, the performance
improvement of the proposed method can be better appreciated
in Fig. 2, in which the simulated control signals are plotted for the
same conditions of Fig. 1, but only the S; operation point is shown
(the inclusion of the three operations points overload the graph).
A drastic reduction of the control signal can be observed with the
proposed method, mainly in the reaction to noise. This reduction
of control sensitivity to noise was the result of the I, . obtained
with the proposed method. These results are very important
because in a real operation higher values of control signals could
produce saturations. The robustness characteristics of both
control design methods can be observed from the fact that the
dynamics of the three operations points (Sy, S, S3) are practically
even when the differences of some parameters are more than two
magnitude orders.

4.2. A CSTR MIMO control

Chen et al. (2002) designed via LMIs a MIMO PI control for the
CSTR described in the following model,

v‘;—f = q(G—C)—Vkoe E/RTC 39)

PCPV% = pCpq(T;—T)+(—AH)Vkoe E/RTC

+ P CPcqe(1—e~/PePedey(T,—T) (40)

Egs. (39) and (40) represent a non-linear dynamic system that
may have multiple steady states, and in which the inputs
variables may be bounded. In order to apply LMIs, Chen et al.
(2002) linearized Egs. (39) and (40) by applying Taylor series
expansion around the neighborhoods of a given steady state. The
obtained model may be represented in linear space state form
(Egs. (1) and (2)) with the following matrices,

wo |G 9] 9

T T-T, | I IV 13 R P P
A ay ap =G . Ci—Gs
T lan axn |’ y= T-T; | | Ty—Ts

10 bi1 bia 10
31:{0 1}, Bz:|:b21 by |° C]:{O 1},

00 00
D11={ }, D12={O 0}

The nominal steady state was reported as C;=0.1molL!,
T, =438.54K, gs=100Lmin !, g, =103.41Lmin"’, Cr = 1mol
L', T5 =350K, Ty =350K, V=100L, h=7 x 10° calmin"' K},
ko=72x10""Lmin~', E/R=10*K, AH=-2x 10°calmol™’,
p=p.=10°gL!, (p=Cp.=1calg-'K~'. At this steady state,
the set of parameters, S={aj1,0a12,021,022,b11,b12,b12,b22} is
given by

So =1{—9.999, —0.0468,1799.8,7.328,0.009, 0, —0.885, —0.878}

However, Chen et al. (2002) used a set of parameters that
represent the average process behavior between the limits of
operations ranges. This set of parameters is

S1={-14.677,-0.0453,2735.3,6.978,0.00858,0, —0.885, —0.867}
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Quadratic indexes (I) robustness criterion (¢,,,,) and H,.-norm obtained for different control parameters of the MIMO CSTR.

Method Control parameters

Indexes, ¢, and Hy,-norm

Chen et al. (2002)

Ruiz-Lopez et al. (2006) kp11 =7732.5, kp1o =0

Kp21 = —13771, kypp = —673.64
kiy = 93 938.6, ki, — 142.6
kiz1 = —97 507, ki, = —6634.2

Proposed

ko1 = 5783.1, ky» = 27.816
Koz = —8724, kyyp = —137.69
kity = 63 687, kiyy = 252.68
ki1 = —30645, ki, =—1129.1

K11 =7733.6, kpip =1.2

kpo1 = —13772, kppy = —674.5
ki = 93 948, k;yp = 141.7

kiz1 = —97 506, ki, = —6633.1
ka1 =126.1, kyi» = 14.9

Tyreg =3.16 x 1075, I, pyuse = 1.89 x 107,
Lyyeg =429 x 10", I puise = 3.36 x 10%,
Lyservo = 4.22 x 107>, Iy sero = 9.04 x 10°
Bmax = 01 Ty ()l = 25.9

Tyreg =1.91 x 1078, I, pypee = 1.55 x 107,
Lyreg =4.28 x 10", I pyse = 4.95 x 10°,
Lyservo = 2.07 x 107>, I seryo = 1.06 x 10*
Gmax = 01Ty (S)lloo = 8.23

Iyreg = 1.85 x 1078, I, 00 = 1.58 x 1072,
Iy reg =3.87 x 10, Ly puise = 4.66 x 10%,

Iy servo = 1.80 x 107>, I servo = 6.66 x 10°
Gimax =01 Ty (S)lloo = 6.57

Kkap1 = —801.2, kgpp = —9002.1

T =498, Ty =485

The MIMO PI algorithm can be written in space state form
(Egs. (3) and (4)) with the following matrices,

A 00 B — 10 By — -1 0
‘{0 0}’ “{0 1}’ 2‘{ 0 —1}’
o ki1 kinz D= kpi1  kpi2 o —kpi1 —kp12
ko1 ki kp21  kp2o —kp21 —kp22

Chen et al. (2002) obtained the set of control parameters listed
in Table 2 by applying LMIs and a space state representation with
uncertain limits. The proposed indexes: Egs. (21), (23), (24), (25),
(30) and (31), ¢pmax and Ty, y(S)ll calculated with parameter set

S1 are also listed in Table 2. Reported values were evaluated with
the following weight and input matrices,

o [l 0 R i1 e [005T 0 [005]
_[0 1x10-4]’ ==5 (s)_[ 1 ]s : (S)_[ 1 ]S
41

The election of matrices Q and R was done by considering that
output concentration (C) varies in the magnitude order of 10!
and temperature (T) changes occur in the magnitude order of 10!;
while variations in both control variables (q and q.) have the same
magnitude order.

For the same system, Ruiz-Lopez et al. (2006) calculated
another sets of parameters, by applying a minimization of both
¢max and the quadratic performance index of Eq. (6) with R=0,
r=0, w=0 and x(0)=x( # 0. The control parameters with their
corresponding indexes (calculated with set S;, and the same
weight and input matrices of Eq. (41)) are listed in Table 2. As it
can be observed, the control parameters reported by Ruiz-Lopez
et al. (2006) produce a reduction in all indexes with the exception
of I puise and Iysero. The performance of both control systems
under a simultaneous change of set point in concentration
and temperature to C;=009molL™! and T;=433.54K,
followed by a simultaneous step change in exogenous inputs
to G;=0.90molL™" and T; =345K at minute 2 are plotted in
Figs. 3-6. It is important to emphasize that control performance
was simulated directly from the non-linear description of reactor
(Egs. (39) and (40)) with linear control equations (Egs. (3) and
(4)), and the control variables, that is the input and cooling flows
(g and q.), were bounded between +40Lmin"! of their nominal
values. The plotted behavior shows the effect of reducing Iy reg
which is manifested through a lower overshoot in output

0.110 r : : : -
— —— Chen et al. (2002)
— 0.105 ——— Ruiz-Lopez et al. (2006)
g | [k 0 |ese This work
= 0.100
c
i=]
T 0.095 1
=
8 0.090 —
c
3
+~ 0.085 1
3
Q.
3 0.080 |
0.075 . . . ' 4
0.0 0.5 1.0 1.5 2.0 25 3.0
Time (min)

Fig. 3. Dynamic simulation of output concentration for the controlled CSTR as
response of simultaneous step in set points concentration and temperature,
followed by a simultaneous step in input concentration and temperature.
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Fig. 4. Dynamic simulation of output temperature for the controlled CSTR as
response of simultaneous step in set points concentration and temperature,
followed by a simultaneous step in input concentration and temperature.
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Fig. 5. Dynamic simulation of feed flow for the controlled CSTR as response of
simultaneous step in set points concentration and temperature, followed by a
simultaneous step in input concentration and temperature.
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Fig. 6. Dynamic simulation of cooling flow for the controlled CSTR as response of
simultaneous step in set points concentration and temperature, followed by a
simultaneous step in input concentration and temperature.

concentration (Fig. 3), while the reduction of I, g, is reflected in a
smaller change of the feed flow (Fig. 5). This last effect produces a
lower decrease of output temperature (Fig. 4).

An optimization search showed that there is not a better set of
control parameters simultaneously minimizing all the indexes. That
is, in this particular case the control parameters reported by Ruiz-
Lopez et al. (2006) are optimal for a MIMO PI algorithm. However,
one of the main advantages of the proposed method is that
performance indexes can be easily calculated for any linear control
algorithm. Therefore, the ISA PID algorithm (Eq. (36)) was
implemented for this MIMO system in order to improve the
performance of the controller reported by Ruiz-Lopez et al. (2006).
A MIMO ISA PID algorithm can be represented by Egs. (3) and (4)
with the following matrices,

11 11

0 1 0 0 1 12
|0 -1/m 0 0 5 _ | P PR
— 10 0 0 1 K 1= ;} 2 >

0 0 0 -1 21 21

/% 21 P22

12 12
11 12
5 2 g2 c {1 00 0}
2 = 5 = 5
12 B2 0010

22 22
21 ﬁ22

01 01
11 12
D= 01 01

21 22

02 02
11 12
» D= 02 02 |

21 22

Ko
01 02 d 11 01
i = kp,'j, i == <kpij + ‘E_,U> , i = [_ﬁij +kp,‘j+kiij‘f,']/‘l?i

2= (B + i+ kTl /T, By = (=B +ki)/ i,
7 =By +kip) /i
An optimization search with weight factors w; =0.5 x 108,
wy=1x10% w3=025x10"", wy=02x 1073, ws =0.5 x 10°,
wg=1x 10~* produced the parameter set and performance
indexes listed in Table 2. A general reduction in all indexes was
obtained in comparison with those calculated for the control
parameters reported by Ruiz-Lopez et al. (2006) and Chen et al.
(2002). The control performance (direct simulation of Egs. (39)
and (40)) plotted in Figs. 3-6 shows an improvement for both
output dynamics (Figs. 3 and 4) and control signals (Figs. 5 and 6).
In general, the dynamic behavior of the MIMO ISA PID controller
for the proposed model performs with lower overshoots in
outputs and smaller changes in control signals. It is important
to note that because simulations were performed with the
original nonlinear model and with the control signal bounded,
the improvement in both tracking performance and disturbance
rejection demonstrates the robustness characteristics of the
proposed controller.

5. Conclusion

The integrals of squared error and squared control signal
deduced in this paper complete the robustness concept proposed
by Ruiz-Lopez et al. (2006) as theoretical basis for a design
method of quadratic optimal and robust MIMO linear controllers.
The design method was stated as a minimization of quadratic
performance indexes subjected to a constraint in the ¢, ratio.
The presented method, applied in the design of both SISO and
MIMO controllers for two CSTR, showed an improvement with
respect to the previous LMI-based controllers defined in R, and
RH normed spaces. Therefore, the presented results demon-
strate the advantages of the proposed method to develop robust
controllers with good performance characteristics for both the
servomechanism and regulator problems.
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Appendix A. Proof of Theorem 1

If the system (10)-(12) is in minimal realization A is stable,
and the proposed controller contains a zero pole (integral action),
under a step disturbance in r(t), there is not off set (e(t) e £, ) and
therefore,

lim y(6) =r(t) =Kz A1
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Eq. (16) for the servomechanism problem (K; = 0) is,

y=CiA 1eMBL K, —C1 AT ByK, + DKo (A2)
Due the system is in minimal realization and A is stable,
lim C1A 1A B,yK, =0 (A3)

(A.1)-(A.3) implies,
—@]Aq By +Dqp =1 (A4)
Therefore applying (A.2) and (A.4),

Iy,servo = /0 (KZ *y)/Q(KZ *J’) dt

T
_ / (C1A 1M B, K,y QT A~ A B, K, dt (A5)
JO
or
T
yservo = Ky B, / @Y(A~1YC,QC; A~ eAtdtB, K, (A6)
0
defining
O=e (A.7)

(A.7) is the solution of the following differential equation and
initial condition,

6=A0, 00)=1 (A.8)
And, like A is stable, exist a Lyapunov function such that,
Vi)=0"P,6 (A.9)

where P, can be calculating from the Riccati equation,
A'Py+PyA =—(A"TYC,QC;A™! (A.10)

Then, by the properties of a Lyapunov function in Eq. (A.6),
T
/ O'(ATYC,QC, AT @ dt = -V (bt = -0 (1)P,O(1) + O'(0)P,O(0)
0

(A11)

Finally, due the system is in minimal realization and A is
stable,

Tlim O'(1)P,O(1)=0
and therefore from Egs. (A.6), (A.8) and (A11),
}Lnolly,servo = Ké [EB/z [py B,K>

which proof the Theorem 1.0J

Appendix B. Proof of Theorem 2

If the system (10)-(12) is in minimal realization A is stable,
and the proposed controller contains a zero pole (integral action),
under a step disturbance in w(t), e(t) e £, and therefore,

tlim y(t)=0, (forK,=0) (B.1)

then

y=CiA 1eMB K —C1 AT B Ky + D11 Ky (B.2)
(B.1) implies,

—CiA'B;+D4; =0 (B.3)

under this considerations,
T
lyreg = K| B / @ (A1YC,QC, A~ Te M B, K, (B.4)
JO

And therefore by the Theorem 1 the Theorem 2 is proofed.
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