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A Fast Design Method for Perfect-Reconstruction
Uniform Cosine-Modulated Filter Banks

Gerhard Doblinger

Abstract—In this correspondence, we present a new and fast design al-
gorithm for perfect-reconstruction (PR), maximally decimated, uniform,
cosine-modulated filter banks. Perfect reconstruction is obtained within
arithmetic machine precision. The new design does not need numerical
optimization routines and is significantly faster than a competing method
based on second-order cone programming (SOCP). The proposed design
algorithm finds the optimum solution by iteratively solving a quadratic pro-
gramming problem with linear equality constraints. By a special modifica-
tion of the basic algorithm, we obtain PR filter banks with high stopband
attenuations. In addition, fast convergence is verified by designing PR filter
banks with up to 128 channels.

Index Terms—Cosine-modulated filter banks, iterative quadratic
programming, perfect-construction filter banks, second-order cone
programming.

I. INTRODUCTION

Maximally decimated, uniform, cosine-modulated filter banks play
a major role in applications where signals must be processed in sub-
bands. A common example is signal analysis/synthesis with filter banks
in MPEG audio coding. In most applications, maximal decimation of
subband signals is used to preserve the number of processed samples.
Oversampled filter banks need a higher computational cost, but offer
advantages for subband processing (e.g., [1]–[3]). Cosine-modulated
filter banks provide efficient implementations (e.g., using a discrete co-
sine transform and polyphase decompositions), and the reduction of the
filter bank design to the design of a single prototype filter.
Theory and design of cosine-modulated filter banks are well estab-

lished and cover a rich set in literature (see e.g., the list of references in
[4]). In principle, perfect reconstruction of filter banks requires a solu-
tion of nonlinear optimization problems. This leads to computationally
intensive design programs, especially for a large number of filter bank
channels, and if a high stopband attenuation is required. In addition,
design methods based on nonlinear optimization are seriously affected
by objective function local minima, and are vulnerable to the selection
of a starting solution.
There is a great variety of proposed methods to alleviate the de-

sign difficulties. Typically, the perfect reconstruction property is re-
laxed resulting in near-perfect reconstruction (NPR) filter banks. Effi-
cient NPR design methods are presented in [5]–[10]. NPR designs are
sufficient in many practical situations since filter bank amplitude dis-
tortions and aliasing errors less than can easily be obtained. With
a PR design, however, we can achieve reconstruction errors within
arithmetic machine precision . The framework of PR de-
signmethods leads to optimization problems with nonconvex quadratic
constraints solvedwith nonlinear optimization programs [11]–[13]. Re-
cently, global polynomial optimization techniques have been applied
to the design of PR filter banks [14], [15]. Although high-quality filter
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banks are obtained, this method is currently limited to low-order proto-
type filters, and to a small number of filter bank channels. Furthermore,
its computational complexity is high.
A fast design method of NPR and PR cosine-modulated filter banks

based on iterative SOCP is presented in [4]. This technique does not
impose a small limit to filter length and number of channels. The PR
design of [4] will be compared with our method. We will show that
it is possible to avoid numerical optimization programs. As a conse-
quence, the proposed method requires a low computational complexity
and needs a significantly lower time to design PR filter banks. Our de-
sign method is similar to the iterative procedures presented in [16],
[17]. However, we use a different solution strategy and a new approach
to avoid convergence to local minima of the objective function.
The paper organization is as follows: In Section II, we briefly sum-

marize the design framework of perfect reconstruction filter banks. The
new design algorithm is described in Section III. The design based on
SOCP which competes with our method is summarized in Section IV.
Representative experimental results and comparison data are discussed
in Section V.

II. COSINE-MODULATED PR FILTER BANKS

A maximally decimated filter bank without additional subband pro-
cessing is composed of finite impulse response duration (FIR) anal-
ysis filters with impulse responses , down- and upsampling by
factor of subband signals, and synthesis FIR filters . The filter
bank impulse responses are obtained by cosine modulation of a low-
pass filter as follows:

(1)

and

(2)

with and . The filter bank
delay is denoted by , and the prototype lowpass FIR filter impulse
response is . In case of a linear phase prototype filter, the delay
is , and the filter bank impulse responses are related by

.
Therefore, only one set of filter bank coefficients must be stored. In
addition, only prototype filter coefficients need to be optimized
due to the impulse response symmetry of linear phase filters. In contrast
to the linear phase prototype filter , the subband filters and

do not exhibit linear phase responses.
Throughout the paper, we assume a linear phase prototype FIR filter

with length being a multiple of . This is commonly no restric-
tion in applications because leads to efficient filter bank
realizations (e.g., [18]).
As derived in [11], the following conditions on the prototype coeffi-

cient vector must be met to ensure the PR property of the filter bank:

(3)

with , and if is
even, and if is odd. Matrices are not symmetric
but are sparse. The detailed structure of is given in [11].
The PR conditions in (3) guarantee a distortionless and aliasing-free

filter bank operation. In addition, the individual subband filters should
exhibit a good stopband behavior. In filter bank design, it is common
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practice to minimize the stopband energy of the prototype filter fre-
quency response. As an advantage, such a criterion leads to a quadratic
objective function in the resulting optimization problem.
The stopband energy in the frequency band is given by

(4)

with frequency response of the prototype
filter. Stopband frequency is typically selected between
and . In most applications, we use . Larger values
result in more overlapping of adjacent subband frequency responses,
and vice versa. With coefficient vector , the stop band energy (4) can
be written as , and the elements of matrix
can be evaluated in closed form [7], [17].
We can now formulate an optimization problem for the solution of
:

(5)

(6)

for , and with given by
the right hand side of (3). There are equality constraints if
is even, and for odd. The quadratic optimiza-
tion problem in (5) is nonconvex since matrices are not positive
definite. Therefore, the constraints in (6) do not form a convex feasible
region.

III. FAST ITERATIVE OPTIMIZATION OF PR FILTER BANKS

The optimization problem (5) can be solved with a nonlinear
program like MATLAB® function . Unfortunately, we
observed a high sensitivity in regard to starting solutions, and in most
design cases we got NPR filter banks only. Much better solutions are
obtained by splitting the optimization task in a sequence of quadratic
problems with linearized constraints [16], [17], [19]. Thus, we itera-
tively solve (5) with a linearization of (6). Each subproblem is convex
because matrix of the objective function is positive definite.
Let denote the solution vector at iteration . We assume that

at the next iteration differs from only by a small vector ,
i.e., , with ( denotes vector
norm). Inserting this approximation into the quadratic form in (6) re-
sults in

(7)

With (7), the constraints (6) at iteration are approximated by a
system of linear equations

(8)

where are the rows of matrix , and vector con-
tains as elements. Note that the system of equations
in (8) is underdetermined because of . For each iteration, we
now have a convex quadratic programming task with linear equality
constraints:

(9)

(10)

for . This problem can be solved in closed form
[19].With the optimized , the prototype coefficient vector is updated

by . The iteration loop is repeated until the norm of
is less than a lower bound or the maximum number of iterations
is reached. It should be noted that (9), (10) do not guarantee that we
always get a sufficiently small to achieve convergence. Consequently,
we will modify the algorithm later on to fix this problem.
We will discuss two alternative methods to solve (9) with constraints

(10): In the first method, we apply a singular value decomposition
(SVD) to obtain a particular solution of (10). Alternatively, a QR
decomposition is used to solve the underdetermined system of linear
equations in (10). With both methods, we eliminate the equality
constraints and obtain an unconstrained problem with a quadratic
objective function.
The general solution of (10) can be represented by

(11)

where is a particular solution, and the column vectors of span
the null space of (i.e., ). The particular solution may
be computed by with pseudo inverse . Both matrices

and are obtained by the SVD when only those
column vectors of are taken into account that correspond to sin-
gular values greater than a given threshold. There are infinitely many
solutions (11) which are parameterized by . Inserting the general so-
lution (11) into (9) yields a quadratic cost function of . The optimum
solution is obtained by setting the gradient of this cost function to
zero:

(12)

The updated prototype FIR filter coefficient vector is then computed by

(13)

with .
An alternative solution of the underdetermined system of linear

equations in (10) is obtained with a QR decomposition which is
computationally more efficient than an SVD. We apply a QR decom-
position with column pivoting to the matrix [20]:

(14)

where is an orthogonal matrix, is an upper
triangular matrix, is an zero matrix. Matrix is
an permutation matrix used to handle possibly rank-deficient
matrices . The number of rows of is determined by using a
small threshold to detect rows with all elements close to zero.
If we define

and (15)

then (10) in combination with (14) leads to

(16)

where we have used and . Thus, the alternative
general solution of (10) is given by

(17)

with obtained by the solution of (16).
General solution (17) can be applied to get an alternative optimum
solution

(18)
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TABLE I
ALGORITHM TO COMPUTE PROTOTYPE FILTER COEFFICIENT VECTOR

The associated update equation of is

(19)

A direct implementation of the proposed algorithm shows conver-
gence problems in cases of filter banks with a moderate number of
channels ( , typically). In such cases, only an NPR filter bank
can be obtained. We found that the presence of in (12), and (18),
respectively, is responsible for a convergence failure. If is removed
in the respective equations, convergence in all cases investigated is en-
sured. However, removal of results in a lower stopband attenuation
of the filter bank transfer functions. Clearly, this effect is due to the
minimization of instead of in (9). Fortu-
nately, we can alleviate this problem by a simple modification of the
algorithm. During the iteration loop, we check the convergence by ob-
servingwhether the error norm saturates to a value greater
than . During the iterations following this event, we modify (12) by
removing :

(20)

( convergence failure is detected,
convergence failure is detected). A similar modification applies to (18).
The correct computation during the first iteration phase ensures a
high stopband attenuation. Switching to the modified equation ensures
convergence to perfect reconstruction in cases where a convergence
failure would occur otherwise. This modification is the key point to
avoid getting trapped in some local minimum which yields an NPR
filter bank only.
The complete algorithm to find of the prototype FIR filter is listed

in Table I. According to our experiments with a wide range of filter
bank specifications, the selection of the starting solution is not crit-
ical. The only requirement is a high stopband attenuation. An FIR filter
design with a Kaiser window is sufficient. It is much faster than an
equiripple design, especially for large filter lengths .

IV. ITERATIVE SOCP DESIGN OF PR FILTER BANKS

We compare our design algorithm with a design method proposed
in [4]. This method is one of the fastest techniques to design cosine-
modulated PR filter banks. Therefore, it is selected for comparison with
our design algorithm. The design method in Section IV of [4] uses the
convex optimization problem of (9) as a starting point. In contrast to
our design method, however, variable of the general solution in (11)

is found by the following optimization problem:

(21)

(22)

The norm constraint ensures that at each iteration the length of is
smaller than a given bound . This optimization problem is an SOCP
which can conveniently be solved with the CVX package [21] and
MATLAB®. As discussed in [4], however, convergence to a PR filter
bank is obtained only if is changed during the iteration loop. It is
suggested to start with a relatively high value and to decrease in sub-
sequent iterations. Otherwise, only an NPR filter bank would be ob-
tained. With an iteration-dependent , convergence can be obtained in
a large selection of different filter bank specifications. An expression
to modify during the iterations is not specified in [4]. Our experience
show that in certain cases the SOCP will not find a feasible solution if
is decreased too aggressively. However, we always got feasible so-

lutions with the following rule:

(23)

with , and , typically. When no feasible SOCP
solution is found at iteration , then in addition to (23) we set
to instead to in the update .
As an alternative to the optimization problem (21), (22), we can

apply a QR-factorization instead of an SVD. We recommend to use
this method in the experiments due to its faster execution.

V. EXPERIMENTAL RESULTS

In this section, we present typical examples of PR filter bank designs
including the convergence behavior of the iterative algorithm with QR
decomposition listed in Table I. The same algorithm with SVD works
quite similar but requires a larger computation time. In addition, we
compare our results with those obtained by the SOCP design of [4]. All
experimental data can be reproduced by a MATLAB® program avail-
able at the author’s homepage [22]. The program has been executed on
a PC with Intel® Core™ i7 CPU at 2.67 GHz, running 64 bit Linux
MATLAB® version 7.13. The SOCP method has been implemented
with CVX version 1.22.
For all filter bank designs shown in this section, we use a transition

width between passband and stopband of (normalized to
half the sampling frequency). As a result, adjacent subband transfer
functions mainly overlap up to the middle of each subband. Filter
banks with even and odd numbers of channels between and

have been designed. The maximum number of iterations in
Table I is set to , and an error bound is used.
A failure of convergence is detected in (20) if the absolute difference
of errors (of step 5 in Table I) between two adjacent iterations is
less than , or if . The first case occurs when the error
decrease is to slow. The second case covers situations where the
error oscillates around a nearly constant value. In case of the SOCP

design, a starting value in (23) is applied. As already
mentioned, a Kaiser window FIR design is used to obtain a starting
solution of the prototype filter.
The selected examples for comparison cover 7 filter banks with

channels. The FIR filter length is chosen to
ensure a stopband attenuation of approximately 100 dB.As an example,
the individual filter bank channel transfer function magnitudes, overall
transfer function magnitude , and total aliasing transfer func-
tion magnitude of an filter bank are plotted in
Fig. 1. Frequency parameter is normalized to half the sampling
frequency. The total aliasing transfer function magnitude is calculated
by

(24)
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Fig. 1. channel filter bank, FIR filter length (channel
transfer function magnitudes in dB, overall transfer function magnitude

in dB, total aliasing transfer function magnitude in dB).

Fig. 2. Impulse response error (h-error), and stopband energy
(E-stopband) versus iteration index of the channel PR filter bank.

where are the aliasing transfer functions [4]. As indicated by
the diagrams in Fig. 1, both perfect reconstruction within machine pre-
cision and a high stopband attenuation are obtained.
The convergence property of our design algorithm is shown in Fig. 2.

The drop in the h-error curve at the end of the convergence phase is due
to the modification as described by (20). As explained in Section III,
both perfect reconstruction and a high stopband attenuation is achieved
by this modification.
To compare both design methods, we summarize the main results in

Tables II, and III, respectively. In these tables, we list the filter bank
reconstruction performances, the final stop band energies, the number
of iterations, and the execution time of the design algorithms. Both
methods exhibit nearly the same reconstruction and aliasing errors. The
stopband energy, however, is larger in case of the SOCP designmethod.
The most prominent difference is observed by comparing the execution
times. It is explained by the larger computational cost of SOCP as com-
pared to the demand needed to solve a system of linear equations.

TABLE II
PERFORMANCE OF CHANNEL PR FILTER BANK DESIGNS PROPOSED IN
TABLE I (FIR FILTER LENGTH , PEAK-TO-PEAK RECONSTRUCTION ERROR
, PEAK TOTAL ALIASING ERROR , STOPBAND ENERGY , NUMBER OF

ITERATIONS , AND EXECUTION TIME )

TABLE III
PERFORMANCE OF CHANNEL PR FILTER BANK DESIGNS USING THE SOCP
METHOD OF [4] (FIR FILTER LENGTH , PEAK-TO-PEAK RECONSTRUCTION
ERROR , PEAK TOTAL ALIASING ERROR , STOPBAND ENERGY ,

NUMBER OF ITERATIONS , AND EXECUTION TIME ))

VI. CONCLUSION

We have presented a new and fast design method for maximally dec-
imated, uniform, cosine-modulated PR filter banks. Perfect reconstruc-
tion within machine precision is achieved for all filter bank specifica-
tions investigated. The design algorithm avoids numerical optimization
routines and is faster than algorithms based on SOCP. Our algorithm it-
eratively solves a quadratic programming problem with linear equality
constraints. The computational complexity per iteration is determined
by the need of a QR decomposition (or SVD alternatively), and linear
equation solving. A special modification of the straight forward solu-
tion ensures convergence to PR filter banks with high stopband attenu-
ations. Although a theoretical convergence proof is currently not avail-
able, both algorithms deliver high-quality PR filter banks after some
ten iterations.
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Commutative Anisotropic Convolution on the 2-Sphere

Parastoo Sadeghi, Rodney A. Kennedy, and Zubair Khalid

Abstract—We develop a new type of convolution between two signals on
the 2-sphere. This is the first type of convolution on the 2-sphere which is
commutative. Two other advantages, in comparison with existing defini-
tions in the literature, are that 1) the new convolution admits anisotropic
filters and signals and 2) the domain of the output remains on the sphere.
Therefore, the new convolution well emulates the conventional Euclidean
convolution. In addition to providing the new definition of convolution and
discussing its properties, we provide the spectral analysis of the convolu-
tion output. This convolutional framework can be useful in filtering appli-
cations for signals defined on the 2-sphere.

Index Terms—Commutative convolution, convolution, spherical har-
monics, 2-sphere (unit sphere).

I. INTRODUCTION

In many applications in physical sciences and engineering, the do-
main of signals under investigation is defined on the 2-sphere, .
These applications include geophysics [1], cosmology [2], electromag-
netic inverse problems [3], medical imaging [4] and wireless commu-
nication systems [5]. It is often required that signal processing tech-
niques developed for the Euclidean domain be extended and tailored
in non-trivial ways so that they are suitable and well-defined for the
spherical domain. One important signal processing tool is convolution
between two signals defined on the 2-sphere, which is fundamental for
filtering applications.
It turns out that an analog of the Euclidean-domain convolution on

the 2-sphere does not exist yet in the literature. While there are various
formulations [4], [6]–[10], they lack some desired or expected proper-
ties as we explain below.
One well-known and widely-used definition for convolution on the

2-sphere appears in [6], which has been generalized for the -sphere
and applied for estimation of probability density function in [11]. The
advantage of this convolution is that it results in a simple multiplica-
tion of the spectral (spherical harmonic) coefficients of the signal and
filter in the Fourier domain. However, the convolution involves full ro-
tation of the filter by all independent Euler angles which includes an
extra averaging over the first rotation about the axis. This is pre-
sumably done to ensure that the output domain of convolution is ,
but it results in smoothing the filter by projecting it into the subspace
of azimuthally symmetric signals. Consequently, this convolution be-
comes identical to a simpler isotropic convolution [9], [10] as shown
in [12]. In contrast to conventional convolution in the Euclidean do-
main, due to excessive smoothing, convolution in [6], [9], [10] is not
commutative and discards information.
Another definition of convolution for signals on the 2-sphere can be

found in [4], [7] and has been referred to as directional correlation in
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