A Fast Design Method for Perfect-Reconstruction Uniform Cosine-Modulated Filter Banks

Gerhard Doblinger

Abstract—In this correspondence, we present a new and fast design algorithm for perfect-reconstruction (PR), maximally decimated, uniform, cosine-modulated filter banks. Perfect reconstruction is obtained within arithmetic machine precision. The new design does not need numerical optimization routines and is significantly faster than a competing method based on second-order cone programming (SOCP). The proposed design algorithm finds the optimum solution by iteratively solving a quadratic programming problem with linear equality constraints. By a special modification of the basic algorithm, we obtain PR filter banks with high stopband attenuations. In addition, fast convergence is verified by designing PR filter banks with up to 128 channels.

Index Terms—Cosine-modulated filter banks, iterative quadratic programming, perfect-construction filter banks, second-order cone programming.

I. INTRODUCTION

Maximally decimated, uniform, cosine-modulated filter banks play a major role in applications where signals must be processed in subbands. A common example is signal analysis/synthesis with filter banks in MPEG audio coding. In most applications, maximal decimation of subband signals is used to preserve the number of processed samples. Oversampled filter banks need a higher computational cost, but offer advantages for subband processing (e.g., [1]–[3]). Cosine-modulated filter banks provide efficient implementations (e.g., using a discrete cosine transform and polyphase decompositions), and the reduction of the filter bank design to the design of a single prototype filter.

Theory and design of cosine-modulated filter banks are well established and cover a rich set in literature (see e.g., the list of references in [2]). In principle, perfect reconstruction of filter banks requires a solution of nonlinear optimization problems. This leads to computationally intensive design programs, especially for a large number of filter bank channels, and if a high stopband attenuation is required. In addition, design methods based on nonlinear optimization are seriously affected by objective function local minima, and are vulnerable to the selection of a starting solution.

There is a great variety of proposed methods to alleviate the design difficulties. Typically, the perfect reconstruction property is relaxed resulting in near-perfect reconstruction (NPR) filter banks. Efficient NPR design methods are presented in [5]–[10]. NPR designs are sufficient in many practical situations since filter bank amplitude distortions and aliasing errors less than 10^{-4} can easily be obtained. With a PR design, however, we can achieve reconstruction errors within arithmetic machine precision ($\approx 10^{-15}$). The framework of PR design methods leads to optimization problems with nonconvex quadratic constraints solved with nonlinear optimization programs [11]–[13]. Recently, global polynomial optimization techniques have been applied to the design of PR filter banks [14], [15]. Although high-quality filter banks are obtained, this method is currently limited to low-order prototype filters, and to a small number of filter bank channels. Furthermore, its computational complexity is high.

A fast design method of NPR and PR cosine-modulated filter banks based on iterative SOCP is presented in [4]. This technique does not impose a small limit to filter length and number of channels. The PR design of [4] will be compared with our method. We will show that it is possible to avoid numerical optimization programs. As a consequence, the proposed method requires a low computational complexity and needs a significantly lower time to design PR filter banks. Our design method is similar to the iterative procedures presented in [16], [17]. However, we use a different solution strategy and a new approach to avoid convergence to local minima of the objective function.

The paper organization is as follows: In Section II, we briefly summarize the design framework of perfect reconstruction filter banks. The new design algorithm is described in Section III. The design based on SOCP which competes with our method is summarized in Section IV. Representative experimental results and comparison data are discussed in Section V.

II. COSINE-MODULATED PR FILTER BANKS

A maximally decimated filter bank without additional subband processing is composed of finite impulse response duration (FIR) analysis filters with impulse responses $h_k[n]$, down- and upsampling by factor M of subband signals, and synthesis FIR filters $g_k[n]$. The filter bank impulse responses are obtained by cosine modulation of a low-pass filter as follows:

$$h_k[n] = 2h[n] \cos \left(\frac{\pi}{M} \left(k + \frac{1}{2} \right) \left(n - \frac{D}{2} \right) \right), \quad (1)$$

$$g_k[n] = 2h[n] \cos \left(\frac{\pi}{M} \left(k + \frac{1}{2} \right) \left(n - \frac{D}{2} \right) - (-1)^k \frac{\pi}{4} \right), \quad (2)$$

with $k = 0, 1, \ldots, M - 1$ and $n = 0, 1, \ldots, N - 1$. The filter bank delay is denoted by D and the prototype lowpass FIR filter impulse response is $h[n]$. In case of a linear phase prototype filter, the delay is $D = \frac{N - 1}{2}$ and the filter bank impulse responses are related by $g_k[n] = h_k[n - 1 - n], 0 \leq k \leq M - 1, 0 \leq n \leq N - 1$. Therefore, only one set of filter bank coefficients must be stored. In addition, only $\lceil N/2 \rceil$ prototype filter coefficients need to be optimized due to the impulse response symmetry of linear phase filters. In contrast to the linear phase prototype filter $h[n]$, the subband filters $h_k[n]$ and $g_k[n]$ do not exhibit linear phase responses.

Throughout the paper, we assume a linear phase prototype FIR filter with length N being a multiple of $2M$. This is commonly no restriction in applications because $N = \frac{2m}{M}$ leads to efficient filter bank realizations (e.g., [18]).

As derived in [11], the following conditions on the prototype coefficient vector h must be met to ensure the PR property of the filter bank:

$$h^T \mathbf{Q}_{i,n} h = \begin{cases} 0 & 0 \leq n < \frac{N}{2M} - 2 \quad i = 0, 1, \ldots, I_{\max} \end{cases}$$

with $h = \{h[0], h[1], \ldots, h[N/2 - 1]\}^T$, and $I_{\max} = \frac{M}{2} - 1$ if M is even, and $I_{\max} = \frac{M}{2}$ if M is odd. Matrices $\mathbf{Q}_{i,n}$ are not symmetric but are sparse. The detailed structure of $\mathbf{Q}_{i,n}$ is given in [11].

The PR conditions in (3) guarantee a distortionless and aliasing-free filter bank operation. In addition, the individual subband filters should exhibit a good stopband behavior. In filter bank design, it is common...
practice to minimize the stopband energy of the prototype filter frequency response. As an advantage, such a criterion leads to a quadratic objective function in the resulting optimization problem.

The stopband energy in the frequency band $\theta \in [\theta_s, \pi]$ is given by

$$E_s(h) = \int_{\theta_s}^{\pi} |H(e^{i\theta})|^2 d\theta,$$ \hspace{1cm} (4)

with frequency response $H(e^{i\theta}) = \sum_{n=-N_s}^{N_s} h[n] e^{-j\theta n}$ of the prototype filter. Stopband frequency θ_s is typically selected between $\theta_s = \frac{2\pi}{30}$ and $\theta_s = \frac{2\pi}{40}$. In most applications, we use $\theta_s = \frac{2\pi}{45}$. Larger values result in more overlapping of adjacent subband frequency responses, and vice versa. With coefficient vector h, the stop band energy (4) can be written as $E_s(h) = h^T \mathbf{P} h$, and the elements of $\frac{2\pi}{30} \times \frac{2\pi}{30}$ matrix \mathbf{P} can be evaluated in closed form [7], [17].

We can now formulate an optimization problem for the solution of h:

$$h = \arg \min_{h} h^T \mathbf{P} h \quad \text{s.t.} \quad h^T Q_i h = c_i,$$ \hspace{1cm} (5)

for $i = 0, 1, \ldots, L_{\max}$, $n = 0, 1, \ldots, \left\lfloor \frac{2\pi}{\Delta f} \right\rfloor - 1$, and with G_i given by the right hand side of (3). There are N_c equality constraints if V is even, and $N_c = \frac{2\pi}{\Delta f} (M + 1)$ for M odd. The quadratic optimization problem in (5) is nonconvex since matrices Q_i,c_i are not positive definite. Therefore, the constraints in (6) do not form a convex feasible region.

III. Fast Iterative Optimization of PR Filter Banks

The optimization problem (5) can be solved with a nonlinear program like MATLAB® function `fmincon()`. Unfortunately, we observed a high sensitivity in regard to starting solutions, and in most design cases we got NPR filter banks only. Much better solutions are obtained by splitting the optimization task in a sequence of quadratic problems with linearized constraints [16], [17], [19]. Thus, we iteratively solve (5) with a linearization of (6). Each subproblem is convex because matrix \mathbf{P} of the objective function is positive definite.

Let h_k denote the solution vector at iteration k. We assume that h_{k+1} at the next iteration differs from h_k only by a small vector δ, i.e., $h_{k+1} = h_k + \delta$, with $\|\delta\|_2 \ll \|h_k\|_2$ ($\|\cdot\|$ denotes L_2 vector norm). Inserting this approximation into the quadratic form in (6) results in

$$h_{k+1}^T Q_i h_{k+1} = h_k^T Q_i h_k + \delta^T Q_i \delta + h_k^T \left(Q_i + \frac{\delta^T Q_i \delta}{\|\delta\|_2^2} \right) \delta,$$

$$\approx h_k^T Q_i h_k + \frac{\delta^T Q_i \delta}{\|\delta\|_2^2} \|\delta\|_2^2.$$

(7)

With (7), the constraints (6) at iteration $k + 1$ are approximated by a system of N_c linear equations

$$A_k \delta = b_k$$ \hspace{1cm} (8)

where $a_{k,i} = Q_{i,n}(h_k)$. The rows of $N_c \times N_c$ matrix A_k, and vector b_k contains $c_i - h_k^T Q_{i,n} h_k$ as elements. Note that the system of equations in (8) is underdetermined because of $N_c < \frac{2\pi}{\Delta f}$. For each iteration, we now have a convex quadratic programming task with linear equality constraints:

$$\delta = \arg \min_{\delta} \left(h_k^T + \delta^T \right) \mathbf{P} \left(h_k + \delta \right) \quad \text{s.t.} \quad A_k \delta = b_k,$$ \hspace{1cm} (9)

for $k = 1, 2, \ldots, K_{\max}$. This problem can be solved in closed form [19]. With the optimized δ, the prototype coefficient vector h is updated by $h_{k+1} = h_k + \delta$. The iteration loop is repeated until the L_2 norm of δ is less than a lower bound or the maximum number of iterations K_{\max} is reached. It should be noted that (9), (10) do not guarantee that we always get a sufficiently small δ to achieve convergence. Consequently, we will modify the algorithm later on to fix this problem.

We will discuss two alternative methods to solve (9) with constraints (10): In the first method, we apply a singular value decomposition (SVD) to obtain a particular solution of (10). Alternatively, a QR decomposition is used to solve the underdetermined system of linear equations in (10). With both methods, we eliminate the equality constraints and obtain an unconstrained problem with a quadratic objective function.

The general solution of (10) can be represented by

$$\delta = \delta_p + V \delta_f,$$ \hspace{1cm} (11)

where δ_p is a particular solution, and the column vectors of V span the null space of A_k (i.e., $A_k V = 0$). The particular solution may be computed by $\delta_p = A_k^+ h_k$, with V as a linear system with column vectors of U and V taken into account that correspond to singular values greater than a given threshold. There are infinitely many solutions (11) which are parameterized by δ_f. Inserting the general solution (11) into (9) yields a quadratic cost function of δ.

$$\Phi_{opt} = - \left(V^T \mathbf{P} V \right)^{-1} V^T \mathbf{P} (h_k + \delta_p).$$ \hspace{1cm} (12)

The updated prototype FIR filter coefficient vector is then computed by

$$h_{k+1} = h_k + \delta_{opt} = h_k + \delta_p + V \delta_{opt},$$ \hspace{1cm} (13)

with $\delta_p = A_k^+ b_k$.

An alternative solution of the underdetermined system of linear equations in (10) is obtained with a QR decomposition which is computationally more efficient than an SVD. We apply a QR decomposition with column pivoting to the $\frac{2\pi}{\Delta f} \times N_c$ matrix A_k^T [20]:

$$A_k^T = Q_k \left(R_k \begin{bmatrix} \mathbf{I} \\ 0_k \end{bmatrix} \right),$$ \hspace{1cm} (14)

where Q_k is an $\frac{2\pi}{\Delta f} \times N_c$ orthogonal matrix, R_k is an $N_c \times N_c$ upper triangular matrix, 0_k is an $N_c \times N_c$ zero matrix. Matrix E_k^T is an $N_c \times N_c$ permutation matrix used to handle possibly rank-deficient matrices A_k^T. The number of rows N_c of R_k is determined by using a small threshold to detect rows with all elements close to zero.

If we define

$$\delta_k = Q_k^T \delta = \begin{bmatrix} \delta_1 \\ \delta_f \end{bmatrix} \quad \text{and} \quad \mathbf{Q}_k = \{Q_1, Q_2\},$$ \hspace{1cm} (15)

then (10) in combination with (14) leads to

$$R_k^T \delta_k = E_k^T b_k,$$ \hspace{1cm} (16)

where we have used $E_k E_k^T = \mathbf{I}$ and $Q_k Q_k^T = \mathbf{I}$. Thus, the alternative general solution of (10) is given by

$$\delta = Q_k \delta_k = Q_k \begin{bmatrix} Q_1 \\ \delta_f \end{bmatrix} \quad \text{and} \quad Q_2 \delta_f = \delta_p + Q_2 \delta_f.$$

(17)

with $\delta_p = Q_k \delta_k = Q_k R_k^{-1} E_k^T b_k$ obtained by the solution of (16). General solution (17) can be applied to get an alternative optimum solution

$$\Phi_{opt} = - \left(Q_2^T \mathbf{P} Q_2 \right)^{-1} Q_2^T \mathbf{P} (h_k + \delta_p).$$ \hspace{1cm} (18)

TABLE I
ALGORITHM TO COMPUTE PROTOTYPE FILTER COEFFICIENT VECTOR h

| Initialization: | 1. set starting solution of \(h = h_0 \), |
| 2. compute \(P \) of stop band energy |
| 3. set \(K_{\text{max}} \), and error threshold \(\varepsilon \) |
| Iteration loop: | \(k = 1 \ldots K_{\text{max}} \): |
| 1. compute \(A_k \), \(b_k \) of (10) |
| 2. perform SVD of \(A_k \) or QR-decomp. of \(A_k^T \) |
| 3. compute \(\phi_{\text{opt}} \) with (20) |
| (or with (18) modified similar to (20)) |
| 4. update \(h_k \) with (13) or with (19) |
| 5. premature exit loop, if \(\| \delta \|_2 / \| b_k \|_2 \leq \varepsilon \) |

The associated update equation of \(h_k \) is

\[
\begin{align*}
\mathbf{h}_{k+1} &= \mathbf{h}_k + \tilde{\mathbf{e}}_{\phi_{\text{opt}}} = \mathbf{h}_k + \tilde{\mathbf{b}}_p + Q_t \tilde{\mathbf{e}}_{\phi_{\text{opt}}}. \quad (19)
\end{align*}
\]

A direct implementation of the proposed algorithm shows convergence problems in cases of filter banks with a moderate number of channels (\(M > 6 \), typically). In such cases, only an NPR filter bank can be obtained. We found that the presence of \(h_k \) in (12), and (18), respectively, is responsible for a convergence failure. If \(h_k \) is removed in the respective equations, convergence in all cases investigated is ensured. However, removal of \(h_k \) results in a lower stopband attenuation of the filter bank transfer functions. Clearly, this effect is due to the minimization of \(\mathbf{f}^T \mathbf{P} \mathbf{f} \) instead of \((\mathbf{h}_k^T + \delta^T) \mathbf{P} (\mathbf{h}_k + \delta) \) in (9). Fortunately, we can alleviate this problem by a simple modification of the algorithm. During the iteration loop, we check the convergence by observing whether the error norm \(\| \delta \|_2 / \| \mathbf{b}_k \|_2 \) saturates to a value greater than \(\varepsilon \). During the iterations following this event, we modify (12) by removing \(h_k \):

\[
\begin{align*}
\mathbf{f}_{\text{opt}} &= \begin{cases}
- (V_2^T \mathbf{P} V_0)^{-1} V_2^T \mathbf{P} (\mathbf{h}_k + \delta_p) & \text{phase 1} \\
- (V_2^T \mathbf{P} V_0)^{-1} V_2^T \mathbf{P} \delta_p & \text{phase 2}
\end{cases} \quad (20)
\end{align*}
\]

(Phase 1 = before convergence failure is detected, Phase 2 = after convergence failure is detected). A similar modification applies to (18).

The correct \(\mathbf{f}_{\text{opt}} \) computation during the first iteration phase ensures a high stopband attenuation. Switching to the modified equation ensures convergence to perfect reconstruction in cases where a convergence failure would occur otherwise. This modification is the key point to avoid getting trapped in some local minimum which yields an NPR filter bank only.

The complete algorithm to find \(h \) of the prototype FIR filter is listed in Table I. According to our experiments with a wide range of filter bank specifications, the selection of the starting solution \(h_0 \) is not critical. The only requirement is a high stopband attenuation. An FIR filter design with a Kaiser window is sufficient. It is much faster than an equiripple design, especially for large filter lengths \(N \).

IV. ITERATIVE SOCP DESIGN OF PR FILTER BANKS

We compare our design algorithm with a design method proposed in [4]. This method is one of the fastest techniques to design cosine-modulated PR filter banks. Therefore, it is selected for comparison with our design algorithm. The design method in Section IV of [4] uses the convex optimization problem of (9) as a starting point. In contrast to our design method, however, variable \(\phi \) of the general solution in (11) \(\delta = \delta_p + V_e \phi \) is found by the following optimization problem:

\[
\phi = \arg \min_{\phi} \left(\mathbf{h}_k + \delta_p + V_e \phi \right)^T \mathbf{P} (\mathbf{h}_k + \delta_p + V_e \phi) \quad (21)
\]

\[
s.t. \quad \| \delta_p + V_e \phi \|_2 < \beta. \quad (22)
\]

The norm constraint ensures that at each iteration the length of \(\phi \) is smaller than a given bound \(\beta \). This optimization problem is an SOCP which can conveniently be solved with the CVX package [21] and MATLAB®. As discussed in [4], however, convergence to a PR filter bank is obtained only if \(\beta \) is changed during the iteration loop. It is suggested to start with a relatively high value and to decrease \(\beta \) in subsequent iterations. Otherwise, only an NPR filter bank would be obtained. With an iteration-dependent \(\beta \), convergence can be obtained in a large selection of different filter bank specifications. An expression to modify \(\beta \) during the iterations is not specified in [4]. Our experience show that in certain cases the SOCP will not find a feasible solution if \(\beta \) is decreased too aggressively. However, we always got feasible solutions with the following rule:

\[
\beta_{k+1} = \begin{cases}
\mu_1 \beta_k & \text{if SOCP solution is feasible at iteration } k \\
\mu_2 \beta_k & \text{otherwise}
\end{cases} \quad (23)
\]

with \(\mu_1 = 0.5 \), and \(\mu_2 = 10 \), typically. When no feasible SOCP solution \(\phi_{\text{opt}} \) is found at iteration \(k \), then in addition to (23) we set \(\delta = \delta_p \) instead of \(\delta = \delta_p + V_e \phi_{\text{opt}} \) in the update \(h_{k+1} \) of \(h_k \) and \(\delta \).

As an alternative to the optimization problem (21), (22), we can apply a QR-factorization instead of an SVD. We recommend to use this method in the experiments due to its faster execution.

V. EXPERIMENTAL RESULTS

In this section, we present typical examples of PR filter bank designs including the convergence behavior of the iterative algorithm with QR decomposition listed in Table I. The same algorithm with SVD works quite similar but requires a larger computation time. In addition, we compare our results with those obtained by the SOCP design of [4]. All experimental data can be reproduced by a MATLAB® program available at the author’s homepage [22]. The program has been executed on a PC with Intel® Core™ i7 CPU at 2.67 GHz, running 64 bit Linux MATLAB® version 7.13. The SOCP method has been implemented with CVX version 1.22.

For all filter bank designs shown in this section, we use a transition width between passband and stopband of \(\Delta f = \pi / 2N \) (normalized to half the sampling frequency). As a result, adjacent subband transfer functions mainly overlap up to the middle of each subband. Filter banks with even and odd numbers of channels between \(M = 2 \) and \(M = 128 \) have been designed. The maximum number of iterations in Table I is set to \(K_{\text{max}} = 200 \), and an error bound \(\varepsilon = 10^{-10} \) is used. A failure of convergence is detected in (20) if the absolute difference of errors (of step 5 in Table I) between two adjacent iterations is less than \(10^{-7} \), or if \(k > 40 \). The first case occurs when the error decrease is to slow. The second case covers situations where the error oscillates around a nearly constant value. In case of the SOCP design, a starting value \(\beta_0 = 0.5 \sqrt{2} \) in (23) is applied. As already mentioned, a Kaiser window FIR design is used to obtain a starting solution \(h_0 \) of the prototype filter.

The selected examples for comparison cover 7 filter banks with \(M \in \{ 2, 4, 8, 16, 32, 64, 128 \} \) channels. The FIR filter length \(N \) is chosen to ensure a stopband attenuation of approximately 100 dB. As an example, the individual filter bank channel transfer function magnitudes, overall transfer function magnitude \(|T_n(e^{j\pi})| \), and total aliasing transfer function magnitude \(|T_n(e^{j\pi})| \) of an \(M = 16 \) filter bank are plotted in Fig. 1. Frequency parameter \(f = \frac{f}{2} \) is normalized to half the sampling frequency. The total aliasing transfer function magnitude is calculated by

\[
|T_n(e^{j\pi})|^2 = \sum_{i=1}^{M-1} |T_i(e^{j\pi})|^2 \quad (24)
\]
where $T_i(e^{j\omega})$ are the aliasing transfer functions [4]. As indicated by the diagrams in Fig. 1, both perfect reconstruction within machine precision and a high stopband attenuation are obtained.

The convergence property of our design algorithm is shown in Fig. 2. The drop in the h-error curve at the end of the convergence phase is due to the modification as described by (20). As explained in Section III, both perfect reconstruction and a high stopband attenuation is achieved by this modification.

To compare both design methods, we summarize the main results in Tables II, and III, respectively. In these tables, we list the filter bank reconstruction performances, the final stopband energies, the number of iterations, and the execution time of the design algorithms. Both methods exhibit nearly the same reconstruction and aliasing errors. The stopband energy, however, is larger in case of the SOCP design method. The most prominent difference is observed by comparing the execution times. It is explained by the larger computational cost of SOCP as compared to the demand needed to solve a system of linear equations.

VI. CONCLUSION

We have presented a new and fast design method for maximally decimated, uniform, cosine-modulated PR filter banks. Perfect reconstruction within machine precision is achieved for all filter bank specifications investigated. The design algorithm avoids numerical optimization routines and is faster than algorithms based on SOCP. Our algorithm iteratively solves a quadratic programming problem with linear equality constraints. The computational complexity per iteration is determined by the need of a QR decomposition (or SVD alternatively), and linear equation solving. A special modification of the straightforward solution ensures convergence to PR filter banks with high stopband attenuations. Although a theoretical convergence proof is currently not available, both algorithms deliver high-quality PR filter banks after some ten iterations.

REFERENCES

Commutative Anisotropic Convolution on the 2-Sphere

Parastoo Sadeghi, Rodney A. Kennedy, and Zubair Khalid

Abstract—We develop a new type of convolution between two signals on the 2-sphere. This is the first type of convolution on the 2-sphere which is commutative. Two other advantages, in comparison with existing definitions in the literature, are that 1) the new convolution admits anisotropic filters and signals and 2) the domain of the output remains on the sphere. Therefore, the new convolution well emulates the conventional Euclidean convolution. In addition to providing the new definition of convolution and discussing its properties, we provide the spectral analysis of the convolution output. This convolutional framework can be useful in filtering applications for signals defined on the 2-sphere.

Index Terms—Commutative convolution, convolution, spherical harmonics, 2-sphere (unit sphere).

I. INTRODUCTION

In many applications in physical sciences and engineering, the domain of signals under investigation is defined on the 2-sphere, S^2. These applications include geophysics [1], cosmology [2], electromagnetic inverse problems [3], medical imaging [4] and wireless communication systems [5]. It is often required that signal processing techniques developed for the Euclidean domain be extended and tailored in non-trivial ways so that they are suitable and well-defined for the spherical domain. One important signal processing tool is convolution between two signals defined on the 2-sphere, which is fundamental for filtering applications.

It turns out that an analog of the Euclidean-domain convolution on the 2-sphere does not exist yet in the literature. While there are various formulations [4], [6]–[10], they lack some desired or expected properties as we explain below.

One well-known and widely-used definition for convolution on the 2-sphere appears in [6], which has been generalized for the e^r-sphere and applied for estimation of probability density function in [11]. The advantage of this convolution is that it results in a simple multiplication of the spectral (spherical harmonic) coefficients of the signal and filter in the Fourier domain. However, the convolution involves full rotation of the filter by all independent Euler angles which includes an extra averaging over the first rotation about the $z-$ axis. This is presumably done to ensure that the output domain of convolution is S^2, but it results in smoothing the filter by projecting it into the subspace of azimuthally symmetric signals. Consequently, this convolution becomes identical to a simpler isotropic convolution [9], [10] as shown in [12]. In contrast to conventional convolution in the Euclidean domain, due to excessive smoothing, convolution in [6], [9], [10] is not commutative and discards information.

Another definition of convolution for signals on the 2-sphere can be found in [4], [7] and has been referred to as directional correlation in...