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Abstract: Analyses of dynamic systems with random oscillations need to calculate the system covariance 

matrix, but this is not easy even in the linear case if the random term is not a Gaussian white noise. A uni-

versal method is developed here to handle both Gaussian and compound Poisson white noise. The quad-

ratic variations are analyzed to transform the problem into a Lyapunov matrix differential equation. Explicit 

formulas are then derived by vectorization. These formulas are applied to a simple model of flows and 

queuing in a computer network. A stability analysis of the mean value illustrates the effects of oscillations in 

a real system. The relationships between the oscillations and the parameters are clearly presented to im-

prove designs of real systems.  
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transmission control protocol (TCP) flow 

 

Introduction 

Stochastic differential equations (SDE) can be used to 
describe systems affected by random processes; how-
ever, the analyses of the SDE are very difficult, espe-
cially with nonzero noise at the equilibrium point of 
the deterministic solution. Such noise causes a 
non-negligible oscillation, so the estimate of this oscil-
lation becomes very important. This paper presents 
formulas for the covariance matrix of a linear Itô SDE 
with additive compound Poisson noise or Gaussian 
white noise. The quadratic variation[1,2] is directly ana-
lyzed to derive the Lyapunov matrix differential equa-
tion which the covariance matrix obeys. The analysis 

then gives explicit formulas for the covariance matrix.  
The results are used to analyze a computer network. 

The additive increase and multiplicative decrease 
(AIMD) algorithm used by the transmission control 
protocol (TCP) inevitably causes system oscillations. 
Although the SDE for the window size for a single 
TCP connection is known[3,4], researchers still do not 
know how to estimate the oscillations of the entire 
system. The main difficulty lies in writing the SDE for 
the aggregate flow and deriving the equations for the 
covariance matrix. The analysis in this paper uses an 
approximation up to the second order moment to de-
rive the SDE with Poisson noise for the aggregate flow. 
Then the result is linearized to get a linear SDE. A sta-
bility analysis gives its covariance matrix which shows 
the effect of queue length variations on the system sta-
bility range.  

Although the covariance matrix of the linear Stra-
tonovich SDE with additive Gaussian white noise is 
known[5], that of the Itô SDE with additive Poisson 
noise is still unknown. Zygadlo[6] proved the Itô SDE 
covariance matrix cannot be derived explicitly from 
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the Stratonovich result. Grigoriu[7] proved that a real 
system with jumping noise conforms to the Itô SDE, 
instead of the Stratonovich SDE, to model the real 
physical process. The matrix equations presented here 
and the method used to handle the aggregate flow both 
provide new insights into the designs of real systems.  

1  Covariance Matrix 

Consider the following linear Itô SDE with additive 
compound Poisson noise:  

d ( ) ( )d d ( )t t t t= +X AX F C          (1) 

0(0) =X X                (2) 
where ( )tX  is the state vector of an n-dimensional 
system, A  is an n n×  constant matrix, F  is an n m×  
constant matrix, T

1( ) ( ( ) ( ))mt C t C t= , ,C  are m-dimen-     

sional independent compound Poisson processes de-
fined in the following, the derivative conforms to Itô’s 
definition, and 0X  is the initial value which is an 

1n×  random vector independent of the compound 
Poisson processes. ( T[ ]∙  denotes the transpose of 
[ ]∙ .)  

Each element of ( )tC  is a compound Poisson 
process defined as  
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where ( )iC t  depends on the independent identically 
distributed γ -valued random variables 1{ }ik kY +∞

=  which 
have the same distribution as the random variable iY  
and the homogeneous Poisson counting process ( )iN t  
has intensity iλ . 1{ ( )}m

i iC t =  are mutually independent. 
1{ }m

i iY =  are also mutually independent.  
Use the following symbols  

T
1 1

ˆ ( ) [ ( )] [ [ ] [ ]]m mt t Y Y t tλ λ= , , ,C C GE E E  
where T

1 1[ [ ] [ ]]m mY Yλ λ= , ,G E E  is an 1m×  constant 
matrix. Here, ˆ ( )tC  is the predictable quadratic varia-
tion (or predictable compensator) of ( ),tC  so ( )t =C     

ˆ( ) ( )t t−C C  is a martingale[1,2].  
Theorem 1  The mean of system {(1), (2)} is  

1 1
0[ ( )] e ( [ ] )tt − −= + −AX X A FG A FGE E    (4) 

Iff A  is stable (i.e., all eigenvalues of A  have nega-
tive real parts), the mean converges and the limit is  

1lim [ ( )]
t

t −

→+∞
= −X A FGE            (5) 

Proof  Taking the expectation of both sides of Eq. 
(1),  

d [ ( )] ( [ ( )] )dt t t= +X A X FGE E        (6) 
The solution to this equation gives the theorem.  

Theorem 2  The covariance of system {(1), (2)} is  
TCov[ ( )] [( ( ) [ ( )])( ( ) [ ( )]) ]t t t t t− − =X X X X XE E E  

T T( ) T ( )
0 0

e Cov[ ]e e e d
tt t t s t s s− −+ ∫A A A AX FΓF    (7) 

where 2 2
1 1diag( [ ] [ ])m mY Yλ λ, ,Γ E E  denotes a di-

agonal matrix whose diagonal entries are 2
1 1[ ]Yλ , ,E       

2[ ].m mYλ E  
Iff A  is stable, the covariance matrix converges 

and the limit of the vectorization of the covariance ma-
trix is  

lim vec(Cov[ ( )])
t

t
→+∞

=X  
1( ) ( )vec( )n n
−− ⊗ + ⊗ ⊗A I I A F F Γ      (8) 

where ⊗  is the Kronecker product, nI  is an identity 
matrix of size n , and vec( )∙  is the column vectori-
zation function.  

Proof  Using symbols Ĉ  and C , Eq. (1) can be 
rewritten as  

d ( ) ( ( ) )d d ( )t t t t= + +X AX FG F C . 
Subtracting Eq. (6) from both sides gives:   

d( [ ]) ( [ ])d dt− = − +X X A X X F CE� E     (9) 
From now on, the symbol t  is omitted when the 

meaning is clear to make the expression more compact. 
The term dF C  is the Itô calculus over a martingale, 
so the integral is also a martingale.  

Integrating by parts using Itô calculus gives  
T

T T

T

d(( [ ])( [ ]) ) d( [ ])
( [ ]) ( [ ]) d( [ ])

d[ [ ] ( [ ]) ].

− − = −

− + − − +

− , −
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∙
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Taking the expectation of both sides with Eq. (9) and 
the martingale property of Itô calculus over the mar-
tingale C  gives  

TdCov[ ] ( Cov[ ] Cov[ ] )dt= + +X A X X A  
T Td [[ ]],F C C FE∙ ∙           (10) 

The quadratic variation of C  is[1,2]  
2

0
[ ]( ) [ ]( ) ( ( ))i i ii i

s t
t C C t C sC C

<

, = , = Δ =∑
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[ ] 0 ifi j i jC C, = , ≠ .  

Thus, the quadratic variation [ ]( )i i tC C,  itself is also 
a compound Poisson process based on the same Pois-
son counting process ( )iN t  as ( )iC t , but with a ran-
dom jump scale of 2

iY  instead of iY . Thus,  
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2[[ ]] [ ]i ii i Y tC C λ, = .E E  

Using the definition of Γ , Eq. (10) can be written as  
T TdCov[ ] ( Cov[ ] Cov[ ] )dt= + +X A X X A FΓF  (11) 

This is a Lyapunov matrix differential equation. The 
solution gives Eq. (7).  

When t →+∞ , Eq. (11) becomes  
T TCov[ ( )] Cov[ ( )]= +∞ + +∞ +A X X A FΓF0  (12) 

Vectorization then gives Eq. (8).  
Corollary 1  If the noise signals are all pure Pois-

son noise, let 1 1 a.s.mY Y= = =  (so that [ ] 1iY = =E       
2[ ]iYE ), the Theorem 2 still works.  

Proof  Because iff 1 a.s.,iY =  the compound 
Poisson process iC  is a pure Poisson process. 

Corollary 2  If the system in Eq. (1) is changed to  
d ( ) ( )d d ( )t t t t= +X AX F C         (13) 

where ( ) ( ) [ ( )] ( )t t t t t= − = −C C C C GE  as defined 
before. The equations for the covariance matrix are 
still Eqs. (7) and (8).  

Proof  Note that ( )d d ( ) ( ( )t t t t+ = −AX F C AX      
)d d ( ).t t+FG F C  Since −FG is a constant vector, it 

remains in the equation for d [ ]XE  but cancels in the 
equation for d( [ ]).−X XE  Therefore, −FG  does 
not affect the equations for the covariance process, but 
it does change the mean value process.  

Now consider the following linear Itô SDE with ad-
ditive Gaussian noise:  

d ( ) ( )d d ( )t t t t= +X AX D B         (14) 

0(0) =X X               (15) 
where ( )tX  is the state vector of an n-dimensional 
system, A  is an n n×  constant matrix, D  is an n m×  
constant matrix, ( )tB  is an m-dimensional independ-
ent Brownian motion where the derivative satisfies 
Itô’s definition, and 0X  is the initial value which is an 

1n×  random vector independent of the Brownian     
motion.  

Theorem 3  The mean value of system {(14), (15)} 
is  

0[ ( )] e [ ]tt = AX XE E            (16) 
The covariance of system {(14), (15)} is  

T T( ) T ( )
0 0

Cov[ ( )] e Cov[ ]e e e d
tt t t s t st s− −= + ∫A A A AX X DD  

(17) 
Iff A  is stable, the mean converges to 0  and the 
covariance matrix converges to  

lim vec(Cov[ ( )])
t

t
→+∞

=X  

1( ) ( )vec( )n n m
−− ⊗ + ⊗ ⊗A I I A D D I     (18) 

Proof  The proof is similar with those of Theorems 
1 and 2. The only difference lies in the quadratic varia-
tion of the Brownian motion:  

T

T T T T T

d[( ( ) [ ( )]) ( ( ) [ ( )]) ]
d[ ( ) ( ) ] d[ ( ) ( )] d

t t t t
t t t t t

− , − =

, = , = .

X X X X
DB B D D B B D DD

E E
 

Replacing TFΓF  in Eq. (11) by TDD  then gives 
Eqs. (17) and (18).  

2  SDE Model for the Aggregate Flow 
Using TCP 

One of the important applications of covariance esti-
mates in engineering systems is the analysis of TCP 
flows in computer networks. With the AIMD algorithm, 
both the TCP flows and the router queue length oscil-
late inevitably. The efficiency of the active queue 
management (AQM) algorithm then depends on esti-
mates of these parameters, especially the router queue 
length. Accurate estimates of not only the mean queue 
length but also its variance will provide more precise 
operating parameter ranges to more effectively avoid 
congestion in the routers. The typical single bottleneck 
network shown in Fig. 1 is used as a simple example to 
illustrate the method.   

 
Fig. 1  A single bottleneck network 

There are a total of n  transmitters 1 nS S, ,  sending 
endless ftp flows to the corresponding receivers 1D ,     

nD,  under TCP Reno. RA and RB are two routers 
connected by a communication link with bandwidth 
C  and transmission delay /2.R  We ignore the time 
delays between iS  and RA and between iD  and RB. 
Further assume that the processes on RB and all the 
receivers very fast and there is no congestion of the 
return ACK flows. It is then a typical system with a 
single bottleneck at router RA.  

Misra et al.[3,4] gave the SDE with Poisson noise to 
describe the evolution of the window size for each sin-
gle TCP connection:  

( )
( ) ( )1d d d 1

RTT 2

i
i it

t t
t

WW t N i n−= − , = , ,    (19) 
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where t −  means the left limit of t  (because there 
are jumps in the Poisson process), RTTt  is the round-        
trip time for instance ,t  ( )

1{ }i n
t iN =  are n  independent 

identically-distributed Poisson processes denoting the 
arrival processes of congestion messages sent back to 
each transmitter, and 0{ }t t.F  is the filtration (or ref-
erence families) generated by these Poisson processes. 
These Poisson processes have the same intensities 

( ) /i
t t nλ λ=  because the n  transmitters are homoge-

neous. In addition, although tλ  is time-variant, it 
changes much more slowly than the system states due 
to the exponentially weighted moving average 
(EWMA) introduced in the following. Thus, when tλ  
is calculated over a short period of time or near the 
fixed mean system value, tλ  can be treated as a 
time-invariant parameter. To further simplify the prob-
lem, Eq. (19) uses the delay-free assumption, ignores 
the slow start term, and only calculates the transmis-
sion delay and the queuing delay for the bottleneck 
node RA. Despite these simplifications, Misra et al.[3,4] 
have shown that their SDE model can quantitatively 
describe a real TCP connection.  

This SDE for a single TCP connection is now ex-
tended to an SDE for the aggregate flow to reduce the 
number of SDEs for the entire system while modeling 
oscillations as precisely as possible. Summing up all 
the windows gives 

( )

1

n
i

t t
i

W W
=

= .∑  

Differentiating both sides and using Eq. (19) gives  
( ) ( ) ( )

1 1

1d d d ( d )
2

n n
i i i

t t t t
ti i

nW W t W NQR C
−

= =

= = −
+

∑ ∑   (20) 

Since the Poisson processes have independent in-
crements, 

( ) ( ) ( )

1 1
( d ) d d

n n
i i it t

t t t t t
i i

W N W t W t
n n
λ λ

− − − −
= =

⎡ ⎤
| = =⎢ ⎥

⎣ ⎦
∑ ∑E F  (21) 

( ) ( ) ( ) 2

1 1
Var ( d ) ( ) d

n n
i i it

t t t t
i i

W N W t
n
λ

− − −
= =

⎡ ⎤
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⎣ ⎦
∑ ∑F    (22) 

By the definition of the fairness index[8]  
2

( ) 2

1

( )( )
n

i t
t

i

WW a
n
−

−
=

=∑            (23) 

where 1a−  is the fairness index. Many researchers 
have calculated this index using simulations. For gen-
eral TCP flows, the fairness index is between 0.5 and 1, 
while for TCP/RED, it is often larger than 0.75[9]. 

Therefore, a  is between 1 and 1.3. Then Eq. (22) can 
be rewritten as 

2
( ) ( )

2
1

Var ( d ) d
n

i i t t
t t t

i

aWW N t
n
λ−

− −
=

⎡ ⎤| = =⎢ ⎥
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−
−
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⎣ ⎦
F          (24) 

where 
0

d
t

t t sN sN λ= − ∫  and ( )
1

n i
t ti

N N
=

= ∑ . Thus, 

tN  is a Poisson process with intensity tλ  and with 

tN  as its corresponding Poisson martingale.  
Combining Eqs. (21) and (24) gives an approxima-

tion of the random part of the total increment to the 
2nd order moment, 

( ) ( )

1

1 ( d ) d d
2 2 2

n
i i tt

t t t t
i

aW
W N W t N

n n
λ −

−
=

− ≈ − −∑   (25) 

Thus, Eq. (20) can be rewritten as  

d d d
2 2

tt
t t t

aWnW W t NQ n ntR C

λ −⎛ ⎞= − −⎜ ⎟
⎜ ⎟+
⎝ ⎠

   (26) 

This describes the number of packets arriving at RA at 
time ,t  which is the window size for the aggregate 
flow.  

In practice, routers use some algorithm to adjust tλ  
according to the queue length to avoid congestion, such 
as random early detection (RED)[10]. TCP/RED can be 
modeled as a feedback control system[11]. The equation 
for the standard RED algorithm with EWMA is  

( ) ( )
RTT

t t
t t t

tt

W Wf A f AQR C

λ = =
+

       (27) 

min

min
max min max

max min

max

0, ;

( ) , ;

1,

t

t
t t

t

A q
A qf A p q A q

q q
q A

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

<
−=
−

<

- -    (28) 

d ln(1 ) ( )
d

t
t t

t

A n h A QQt R C

−
= −

+
        (29) 

where tQ  is the router queue length, tA  is the expo-
nentially weighted moving average of ,tQ  h  is a weight 
which generally equals 0.002 and min ,q  max ,q  and maxp  
are preassigned parameters[3].  

The RED queue length performance can be     
improved by using explicit congestion notification 
(ECN)[12], where the original packet is transmitted 
forward as usual with only a notification sent back to 
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its transmitter. ECN is used here to simplify the equa-
tion so that it can be solved explicitly.  

max 0 , 0;

d , 0 buff;
d

min 0 , buff

t
t

t

t t
t

t

t
t

t

W C QQR C
Q W C QQt R C

W C QQR C

⎧ ⎧ ⎫
⎪ ⎪ ⎪− , =⎨ ⎬⎪

⎪ ⎪⎪ +
⎩ ⎭⎪

⎪
⎪= − < <
⎨ +⎪
⎪

⎧ ⎫⎪
⎪ ⎪⎪ − ,⎨ ⎬⎪ ⎪ ⎪+⎪ ⎩ ⎭⎩

.

  (30) 

The primary equations in Eqs. (26), (30), and (29) 
plus the associated equations in Eqs. (27) and (28) give 
an integrated description of the aggregate flow in the 
network in Fig. 1 for TCP/RED control.  

3  Stability Analysis of the Mean 
Value 

The stability analysis of the system mean seeks to find 
the range of the number of connections n  for which 
the system has a stable fixed mean.  

The expectations of both sides of Eq. (26) are 
d
d 2

t t
t

t

W n WQt nR C

λ
= −

+
           (31) 

The fixed operating point ˆ ˆˆ( )W Q A, ,  of the system 
{(31), (30), (29)} in the three-dimensional space [0,      

) [0 buff ] [0 buff ]+∞ × , × ,  is  
ˆ ˆA Q=                  (32) 

ˆŴ Q CR= +               (33) 
Only max

ˆ ˆ0 A Q q< = -  will give a reasonable fixed 
operating point. For this condition, Q̂  obeys the 
equation  

2
2 max min

min
max

2 ( )ˆ ˆ( ) ( ) n q qQ CR Q q
p

−
+ − =    (34) 

Q̂  can then be determined either by using Cardano’s 
formula or numerically.  

From condition max
ˆ0 Q q< -  and Eq. (34) gives 

Proposition 1. 
Proposition 1  To ensure a reasonable fixed oper-

ating point for the system mean, the number of con-
nections n  has the upper bound 

max
max( )

2
pn q CR+-           (35) 

For the stability analysis, linearize the SDE {(26), 
(30), (29)} near ˆ ˆˆ( )W Q A, , . Note that the random term 
in Eq. (26) is not zero at ˆ ˆˆ( )W Q A, , , so the solution 
includes the linear term for the deterministic term of 
the SDE and the constant term for the random term of 
the SDE. Thus, Tˆ ˆˆ( )t t t tW W Q Q A A− , − , −X ,  

T
2

min
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22
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3 3
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where max max min/( ),K p q q−  1 min
ˆ( ),CK Q qφ − −  2φ      

ˆ( )/(2 ),CK Q CR n− + 3
ˆ/( ),C Q CRφ + 4 ln(1 )nC hφ − /       

ˆ( )Q CR+ . This solution has substituted Eqs. (27) and 
(28) into Eq. (26), and the zero in the first row of the 
second column is due to Eqs. (32), (33), and (34).  ˆ ˆˆ( )

ˆ( )
2 2
0 0
0 0

t

W Q A

aW a Q CR
n n

, ,

⎛ ⎞ ⎛ ⎞+
− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
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min min

ˆˆ ˆ ˆ( ) ( )ˆ
W K A q CK Q q

QR C

λ = − = − .
+

 

Then, the linearized equation of the stochastic sys-
tem {(26), (30), (29)} is  

d d dt t tt N= +X Φ X Ψ           (36) 
Some approximations give[13] Proposition 2. 
Proposition 2  To ensure all the eigenvalues of Φ  

have negative real parts, n  should satisfy the follow-
ing condition:  

( )
3

min

min

( )
22

K q CRn
q CR h

+
>

+ +
           (37) 

If there are no random oscillations in the system, i.e., 
Eqs. {(31), (30), (29)} are the exact system equations, 
Eqs. (35) and (37) can be used as the upper and lower 
bounds for the admission control in practice.  

4  Covariance of the TCP/RED  
System 

Real TCP/RED systems always have oscillations 
which affect the stability of the fixed operating point. 
The covariance matrix gives the amplitude of the ran-
dom oscillations to understand the operations of real 
systems.  

For the system in Eq. (36), let lim Cov[ ]tt→+∞
V X . 

From Corollary 2, V  obeys Eq. (8). To further clarify, 
Eq. (12) in the proof of Theorem 2 can be used directly 
to get T Tλ̂= + + .ΦV VΦ Ψ Ψ0  Substituting Ψ  and 
λ̂  into the equation and using Eq. (34) gives  

T

0 0
2
0 0 0
0 0 0

aC⎛ ⎞
⎜ ⎟
⎜ ⎟

= + + ⎜ ⎟
⎜ ⎟
⎝ ⎠

ΦV VΦ0         (38) 

Thus, the covariance matrix V  is approximately 
proportional to the bandwidth C  (neglecting the 
nonlinear effect in Φ ). Thus, when the bandwidth in-
creases, the system loses its stability as shown by Low 
et al.[14] who did not clearly explain the cause because 
their model only included the deterministic part.  

The result in Eq. (38) is compared with a real system 
for a simulated network using ns-2. The typical envi-
ronmental parameters are: packetsize 1 KByte 8 Kb,= =  

24 Mbps 3 Kpackets/s,C= = 0.1 s,R= min 800 Kbq = =      
100 packets,  max 2 4 Mb 300 packetsq = . = , max 0 1p = . , 

0 002,h = .  buff 4 8 Mb 600 packets,= . =  and 1 1a = . . 

From Eqs. (35) and (37), the upper bound on the num-
ber of connections n  is 134 and the lower bound is 
12.  

Then, calculate the covariance matrices nV  in Eq. 
(38) for n is 15, 75, and 130. nV  and the modified- 

correlation matrix nϒ  for each n, which is the same 
as the correlation matrix except that the elements of the 
diagonal are the relative standard deviations (all these 
diagonal elements would be 1 for the correlation ma-
trix.), are:  

15

15

75

75

3806 0 3441 6 62 1
3441 6 3441 6 40 1

62 1 40 1 40 1

0 1521 0 9509 0 1589
0 9509 0 5562 0 1079
0 1589 0 1079 0 0600

415 4 289 1 11 11
289 1 289 1 47 40
11 11 47 40 47 40

0 04

. . − .⎛ ⎞
⎜ ⎟= . . . ,⎜ ⎟
⎜ ⎟− . . .⎝ ⎠
. . − .⎛ ⎞

⎜ ⎟= . . . ;⎜ ⎟
⎜ ⎟− . . .⎝ ⎠

. . .⎛ ⎞
⎜ ⎟= . . . ,⎜ ⎟
⎜ ⎟. . .⎝ ⎠
.

=

V

V

ϒ

ϒ

130

130

14 0 8342 0 0792
0 8342 0 0882 0 4049
0 0792 0 4049 0 0357

339 9 208 4 20 39
208 4 208 4 59 24
20 39 59 24 59 24

0 0311 0 7831 0 1437
0 7831 0 0494 0 5331
0 1437 0 5331 0 0263

. .⎛ ⎞
⎜ ⎟. . . ;⎜ ⎟
⎜ ⎟. . .⎝ ⎠

. . .⎛ ⎞
⎜ ⎟= . . . ,⎜ ⎟
⎜ ⎟. . .⎝ ⎠
. . .⎛ ⎞

⎜ ⎟= . . . .⎜ ⎟
⎜ ⎟. . .⎝ ⎠

V

ϒ  

The relative standard deviation of a random variable 
Z  is defined as: RSD[ ] Var[ ] [ ]Z Z Z= / E . Both the 
variances and the relative standard deviations of W  
and Q  decrease dramatically as n  increases. For n  
near the lower bound, the variance of Q  can not be 
neglected. Both the variance and the RSD of the 
EWMA variable A  are much smaller than that of Q , 
which means that the oscillations of A  are much 
smaller than that of Q , which is the objective of 
EWMA.  

The relationship between the router queue length 
and the number of connections predicted by the present 
model are compared with those of a simulated system 
based on the mean ( Q̂ ) and the variance (the second 
row the second column of V ) as the number of     
connections increases. In the simulations, n  was   
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increased from 5 to 150 in steps of 5. Each step was 
simulated for 100 s with the last 25 s of the trajectory 
used to calculate the mean and the variance (the simu-
lation time step was 0.05 s). The results are shown in 
Fig. 2 where the abscissa is the number of connections, 
n , and the ordinate is the queue length, Q . The two 
horizontal dotted lines denote minq  and max .q  The 
two vertical dotted lines denote the lower bound lown  
from Eq. (37) and the upper bound upn  from Eq. (35). 
The upper pair of curves is the mean Q∞  calculated 
by the simulation (dashdotted curve) and by Eq. (34) 
(solid curve). The lower pair of curves are the standard 
deviations (the square root of the variance) of Q∞  
calculated by the simulation (dotted curve) and Eq. (38) 
(dashed curve).    

 
Fig. 2  Comparison of predicted and simulated queue 
length means and standard deviations 

The results in this graph and in the modified- corre-
lation matrices show that the variance can not be ne-
glected relative to the mean, especially when n  is 
near the lower bound. This means the random oscilla-
tion can destroy the system stability when n  is 
slightly larger than the stable bound. This is the reason 
why previous studies have used some sufficient but not 
necessary assumptions for the parameter ranges for 
TCP/RED stability analyses when using the fluid flow 
model[15,16]. This study quantitatively shows the effects 
of the oscillations.  

The results also show the current equations accu-
rately model the real systems. The predicted standard 
deviation is always above the simulated curve, but is 
usually quite close. The predicted means are very close 
to the simulated values. The differences are due to 
many simplifications in the current derivations. For 
example, the real TCP uses the slow start algorithm to 

slow the increase of the transmission window size after 
receiving an ECN, which is neglected in the analyses. 
Also when the variance is large, the linearization pre-
cision decreases. Despite these simplifications, this 
model can still provide some useful insights into real 
systems.  

Another important question is how the queue length 
standard deviation is affected by simultaneous system 
parameter changes. This effect is best shown in a 
multi-dimensional graph which is usually drawn from 
simulations which are very time consuming. The trends 
in Fig. 3 calculated using Eq. (38) illustrate the rela-
tionship between the queue length relative standard 
deviations, RSD, the number of connections, ,n  and 
the bandwidth, .C  The result shows that RSD in-
creases to a significant value as n decreases or C   
increases.   

 
Fig. 3  Variation of the queue length relative standard 
deviation for various n and C 

5  Conclusions 

This paper presents equations for the covariance matrix 
of the linear SDE with additive Gaussian or compound 
Poisson noise. The equations can be used for many 
stochastic systems. A single bottleneck computer net-
work using TCP/RED is used to illustrate the analysis 
of the variance. The system SDE is analyzed to deter-
mine the stability range of the mean queue length. The 
covariance matrix is then calculated for stable means. 
The results show how the stable system range esti-
mated by the mean field method need to be adjusted, 
which is very important in the design of real engineer-
ing systems. The current results describe the statistical 
characteristics of the system operating state that are 
needed for better system designs.  
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