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a b s t r a c t

Small-signal stability analysis in a power system uses a linearized approximation of its nonlinear model
to analyze its behavior when subjected to small perturbations. In this approach, there is an implicit
assumption that the perturbations are small enough so the imprecisions of the linear approximation with
respect to the nonlinear model remain within an acceptable range. This restricts the validity of the line-
arized model to a neighborhood of the equilibrium conditions under which the model was obtained. Usu-
ally, the size and shape of this neighborhood is determined by the regions in the state-space where no
protective limiters are active. However, there may be situations when a relatively small perturbation
drives the system to such regions, yet there is still no threat to the stable operation of the system. This
paper proposes a method to find an attraction area of the system, using a linearized model with the addi-
tion of AVR and PSS output limiters, in such a way that this area includes parts of the regions of the state
space where the limiters are active, therefore widening the neighborhood of the equilibrium point where
stability is guaranteed. The obtained results show that this attraction area is much larger than the neigh-
borhood defined by the region where the linearized approximation is valid, and also indicate that the lin-
earized model, with the addition of AVR and PSS output limiters, can provide good approximations of the
nonlinear system trajectories even in some parts of the regions where the limiters are active.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Small-signal stability problems have been reported in power
systems since the middle of the last century. Usually, they happen
in the form of poorly damped electromechanical oscillations, and
additional control loops are required to prevent these oscillation
from being harmful to the system operation [1].

The most commonly used type of controller to enhance damp-
ing of these oscillations is known as power system stabilizer
(PSS), which is basically a classical phase compensator [2].
Although power systems have a highly nonlinear behavior, the
PSSs are designed by classical control techniques in the frequency
domain, involving linearization around a nominal operating point,
controller design over the linearized nominal model and a posteri-
ori verification of controller performance in the closed loop nonlin-
ear model of the system, under various operating conditions [3].

Even though this approach is still the typical industry practice,
there are two major issues inherent to it, which have motivated
several different proposals for new controller design procedures
([4,5] and [6] are examples). The first one is the use of a nominal
model for controller design, which may represent the system
behavior only during a small fraction of its daily operation, since
ll rights reserved.
the operating point of power systems usually experiences large
variations.

The second one (which is the main target of this paper) is the
fact that power system dynamics are highly nonlinear [3], and
therefore the validity of the designed linear controllers is restricted
to a small neighborhood of the equilibrium point used for lineari-
zation. Although this is a well-known fact, the actual shape and
size of this neighborhood is never addressed at the design stage.
Usually, the verification of the validity of the designed control
law, both in terms of stability and performance, is carried out after
the design (via numerical simulation of the closed loop nonlinear
model). If the results of this simulation match the predicted out-
come of the nominal linearized model near its respective equilib-
rium point and are acceptable for other selected operating points
as well, then the design is considered as successful.

In transient stability studies, where the nonlinear model of the
power system is directly employed, the determination of the
attraction area for a particular operating condition is a typical prac-
tice [7]. When it comes to small-signal stability studies in power
systems, however, this issue has only recently become the focus
of intensive research. Of course, stable linearized models are
attractive in the whole state-space, but the question is: In power
systems, how far from an equilibrium point can the state go,
so the dynamics can still be represented by the linearized mod-
el? Another question immediately follows this one: Is it possible
for the state to go any further, without the risk of instability?
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Fig. 1. Block diagram of first-order AVR with output limiters.
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These issues have sparked a number of recent investigations on
several different topics related to the precision with which the lin-
earized models can accurately represent the nonlinear behavior of
the power system. As examples, [8] and [9] propose approaches as-
sess the impact of the limiters in the automatic voltage regulator
(AVR) and PSS outputs on the small-signal stability of power sys-
tems. However, these two references neglect the fact that, for these
outputs to reach their ceiling limits, the system state must drift
considerably away from its equilibrium point, and therefore the
notion of a small-signal is not very well-defined in this case. The
effect of other nonlinearities (such as the ones introduced by the
network equations, for example) might be significant over the sys-
tem dynamics, and therefore the precision of the linear model in
describing the power system response may be affected.

As can be seen from the considerations in the previous para-
graph, the two questions posed before it are quite involved. How-
ever, although this paper does not intend to provide complete
answers, it aims to shed some light over them, mainly with respect
to the role played by the AVR and PSS output limiters in this issue.
For this purpose, Section 2 presents a nonlinear power system
model, typically used in power system stability studies, and dis-
cusses the first question stated in the previous paragraph. After
that, Section 3 presents a procedure that can be used to estimate
the attraction area of a linearized power system model, considering
the presence of output limiters in both the AVR and the PSS. The
results of the application of this procedure in a case study are
presented in Section 4 and used as a basis for the discussion of
the second question in the previous paragraph. The main conclu-
sions of the paper are then summarized in Section 5.
y
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Fig. 2. Block diagram of PSS with output limiters.
2. Power system modelling

Under typical assumptions, a set of nonlinear equations to mod-
el the operation of a multimachine power system can be the
following:

_di ¼ �xxi � �x ð1Þ

_xi ¼
1

2Hi
Pmi � E0qiðIRi cos di þ IIi sin diÞ
� �

ð2Þ

_E0qi ¼
1

s0doi

EFDi � E0qi � ðxdi � x0diÞðIRi sin di � IIi cos diÞ
� �

ð3Þ

In (1)–(3), di is the rotor angle, xi is the rotor speed (with respect to
a synchronous reference), E0qi is the quadrature-axis transient volt-
age, for i = 1,. . .,n, where n is the number of generators of interest,
assuming that a large portion of the system was modeled as an
equivalent infinite bus. Parameter �x is the absolute value of the
synchronous speed (in radians per second), and definitions for the
other parameters in these equations can be found in [10] and [2].

The set of nonlinear differential equations presented above is
constrained by the following algebraic equations:

IRi ¼
Xn

k¼1

E0qkðGik cos dk � Bik sin dkÞ ð4Þ

IIi ¼
Xn

k¼1

E0qkðBik cos dk þ Gik sin dkÞ ð5Þ

VRi ¼ E0qi cos di þ x0diIIi ð6Þ
VIi ¼ E0qi sin di � x0diIRi ð7Þ

Vti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

Ri þ V2
Ii

q
ð8Þ

In (4),(5), IRi and IIi are, respectively, the real and imaginary parts of
the currents injected by the generator i into the transmission net-
work, through their equivalent internal buses. In (6)–(8), VRi, VIi

and Vti are, respectively, the real part, imaginary part and absolute
value of the voltage at the terminal bus of generator i. In this paper,
a static model is used for the network and the loads are assumed as
constant admitances, so they can be included in the nodal admi-
tance matrix of the network. Parameters Gik and Gik in (4),(5) are,
respectively, the real and imaginary parts of the transfer admitanc-
es between buses i and k.

In this study, the AVR is assumed as a first-order linear regula-
tor, whose block diagram is given in Fig. 1. In this figure, Ke and Te

are, respectively, the AVR gain in steady state and the AVR time
constant.

It is important to highlight the presence of the windup limiters
in the output of the AVR of Fig. 1. This limiter is necessary to avoid
the application of excessive field voltage during relatively large
disturbances in the power system operation, and is typically mod-
elled in transient stability studies. However, the linearized models
used for small-signal stability studies neglect these limiters under
the assumption that the state does not drift too far away from the
equilibrium point (and therefore the AVR output is within the
limits).

This reasoning leads to the following conclusion (which is re-
lated to the first question of the last section): when the generator
is not heavily loaded (and therefore the effect of nonlinearities is
not very high in its operation), the linearized model is valid within
the region where the limiters are not active. Some subjectiveness is
obviously contained in the term ‘‘heavily loaded”, which requires
an engineering judgement to decide how much imprecision can
be tolerated in the response of the linearized model with respect
to the one of the nonlinear model.

However, relatively small perturbation not rarely take the gen-
erator to an operating region where the limiters are active, yet
there is still no significant threat to its stable operation. The linear-
ized model is useless in this situation because, if it is stable, then it
is attractive everywhere in the state-space, so it does not provide
any information on the system stability in the regions where the
limiters are active. Therefore, this paper asks the following ques-
tion: using the linearized model and considering the presence
of the limiters, is it possible to find a region where a stable oper-
ation of the generator is guaranteed, even when the limiters are
active? The answer is yes, and this paper will show how in the next
section.

3. Estimating the attraction area in the presence of limiters

Before proceeding to answer the previous question, we must re-
mind that the response of power systems to small perturbations
may be oscillatory, and therefore a PSS must be designed to
provide adequate damping for these oscillations, as mentioned in
Section 1. Fig. 2 shows the typical block diagram of a PSS, and it
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is possible to see that this controller also possesses windup limit-
ers in its output [2]. Therefore, both the AVR and PSS output limit-
ers must be taken into account when answering the previous
question.

The first step in the design of the PSS is the choice of an output
signal from the power system model that exhibits good observabil-
ity with respect to the oscillation modes of interest. Usually the ro-
tor speeds of the generators are good candidates for such a signal
selection. The input to the power system model is also usually cho-
sen as the stabilizing signal Vsi added to the AVR summing junc-
tion, as seen in Fig. 1.

In the next step, Eqs. (1)–(3) are coupled with the ones repre-
sented by the block diagram in Fig. 1, and the algrebraic equations
(4)–(8) are substituted in the resulting equations, so the previous
set of differential-algebraic equations becomes a nonlinear state-
speace representation of the power system. This nonlinear state-
space is then linearized around an operating point defined by spe-
cific values of Pmi and Vrefi. The result is a linear state-space model
in the form

D _�x ¼ AD�xþ BD�u ð9Þ
D�y ¼ CD�x ð10Þ
In Eqs. (9) and (10), the state vector D�x is composed by deviations
from the equilibrium values of the states of the nonlinear model.
The input D�u is the deviation from the equilibrium values of the
Vsi signals in Fig. 1, and the output D�y is the deviation of the rotor
speed of the generators from the synchronous speed.

Typical industry practices for PSS design involve a combination
of phase compensation and pole placement techniques to deter-
mine the desired PSS parameters [11].. After the PSS is designed
and placed in the generator, the closed loop system can be
described by

D _x ¼ AclDx ¼ ðAþ BKÞDx ð11Þ

where

Acl ¼
A BCc

BcC Ac

" #
ð12Þ

and Ac , Bc and Cc are a state-space realization of the PSS transfer
function.

In (11), the state vector x contains the state variables of (9) plus
three other state variables referred to the PSS. Note that matrix Acl

is split in the terms A and BK. This splitting is made to enable the
treatment of the limiters in the analysis of the closed loop linear-
ized system. Matrix B selects the field voltage deviations DEfdi

and the stabilizing signal deviations DVsi as the limited inputs
and matrix K closes the loop by injecting the corresponding input
signal into each of these variables. Matrix K is composed by the
AVR gains Kei and PSS gains Kpssi, in such a way that it injects the
field voltages into the differential equations of D _E0qi and the PSS
outputs into the equations of D _Efdi.

The outputs created by the term KDx in (11) are limited in such
a way that

DEfdmini 6 DEfdi 6 DEfdmaxi ð13Þ
DVsmini 6 DVsi 6 DVsmaxi ð14Þ

For simplicity, we will consider in this work that D Efdmini =
�DEfdmaxi and DVsmini = �D Vsmaxi.

Going back to the question asked at the end of the last section,
we are interested in discovering a region where stability of the
linearized model (11) is guaranteed, even if the output limiters
defined above are active. On the other hand, it is not interesting
that this region is arbitrarily large because, even in a lightly loaded
generator, the nonlinear behaviors become significant when oper-
ating far apart from the equilibrium point.
Therefore, our analysis must be restricted to a set of pre-deter-
mined initial operating conditions of interest, which are represen-
tative of possible outcomes from perturbations in the system
equilibrium. These conditions can be selected from the initial
post-fault values of the states resulting from the analysis of a con-
tingency list, which is typical practice in the industry. These values
will determine how far apart from the equilibrium the dynamics
will start, and we want to know if the system will be stable even
when such operating conditions lead to the activation of the output
limiters. The following proposition provides a way to answer this
question.

Proposition 1. Given a set Dx0j, j = 1,. . .,r of initial conditions of
interest, if there exists matrices of appropriate dimensions P = PT > 0,
F, G, H and diagonal matrices D = diag(Dl,l) and L = diag(Ll,l), l = 1,. . .,
2n, such that

M1;1 MT
2;1 MT

3;1

M2;1 M2;2 MT
3;2

M3;1 M3;2 M3;3

2
64

3
75 < 0 ð15Þ

P ½ð1� L2k�1;2k�1ÞKek�T

ð1� L2k�1;2k�1ÞKek E2
fd max k

" #
P 0 ð16Þ

P ½ð1� L2k;2kÞKpss k�T

ð1� L2k;2kÞKpsskl V2
s max k

" #
P 0 ð17Þ

DxT
0jPDx0j 6 1; j ¼ 1; . . . ; r ð18Þ

0 6 L 6 I ð19Þ

for k = 1,. . .,n, where

M1;1 ¼ FðAþ BKÞ þ ðAþ BKÞT FT ð20Þ
M2;1 ¼ GðAþ BKÞ � FT þ P ð21Þ
M2;2 ¼ �G� GT ð22Þ
M3;1 ¼ HðAþ BKÞ þ BT FT þ DLK ð23Þ
M3;2 ¼ �Hþ BT GT ð24Þ
M3;3 ¼ �2DþHBþ BT HT ð25Þ

then the set �ðP;1Þ ¼ fDx 2 Rn j DxT PDx 6 1g is an estimation of the
attraction area for the system (11), considering (13) and (14), and con-
tains Dx0j, j = 1,. . .,r.

The proof of this proposition, together with the definition of
each of the variables used in it, can be found in [12] or, alterna-
tively, in [13] and [14]. They will not be repeated here due to space
limitations. The set �(P,1) is an ellipsoid centered in the origin of
the linearized system (11), which corresponds to the equilibrium
point of interest for the nonlinear state-space that models the
power system, and is a positively invariant set, which ensures that
all the system trajectories initiating within this set will remain in it
for all t > t0. Since �(P,1) contains Dx0j, j = 1,. . .,r, this ensures that,
for all the initial conditions of interest, the generators will be stable
even if the limiters are active during a significant part of the sys-
tem trajectory.

Another interesting property of this proposition is that, since
�(P,1) contains Dx0j, j = 1, . . .,r, it also contains the polyhedron
X0 ¼ CofDx01; . . . ;Dx0rg, where Co {�} stands for the convex hull.
This means that the guarantee of stability is obtained not only
for the response to the selected initial conditions Dx0j, j = 1,. . .,r
(which, as previously stated, are representative of possible out-
comes of perturbations in the system), but also for the response
to any initial condition contained in the polyhedron X0 (which
has Dx0j, j = 1,. . .,r as its vertices). Therefore, it becomes clear that
one does not need to know precisely the initial conditions of inter-
est in order to be able to apply this proposition. In other words,
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only admissible bounds for the initial values of the state variables
are required.

All conditions in (15)–(19) are Linear Matrix Inequalities (LMIs),
except for (15), which contains the entry M3,1 given in (23). This
entry includes the product of matrix variables DL in its last term,
which introduces a bilinearity into (15). Although we cannot use
an LMI solver to directly compute a solution to this problem, an
algorithm can be devised to achieve this solution by iteratively
applying an LMI solver. The algorithm is as follows [12]:

Algorithm

� Step 1: Fix L and solve, for P, F, G, H, D and c, the problem

min c ð26Þ

subject to (15)–(17) and

DxT
0jPDx0j 6 c; j ¼ 1; . . . ; r; ð27Þ

� Step 2: If c > 1, fix D obtained in the previous step and solve (26)
subject to (15)–(17) and (27) for P, F, G, H, L and c;

� Step 3: If c > 1, go to Step 1.

With this algorithm, a fast and reliable numerical solution can
be obtained for this problem by the iterative application of an
LMI solver, such as SeDuMi [15], for example.

4. Case study

In this section, the previously described algorithm was applied
to estimate the attraction area of two different power system mod-
els. In order to keep the conceptual nature of the presentation and
the clarity in the explanation of the results, the first tested system
was chosen as a single machine versus infinite bus (SMIB) system,
whose single line diagram is shown in Fig. 3.

The values of the system parameters for the SMIB system of
Fig. 3 are the following: x0 = 2p60 rad/s, H = 5 s, xd = 1.6 p.u.,
x0d ¼ 0:32 p:u:, s0do ¼ 6 s, Ke = 100 p.u./p.u., and Te = 0.01 s. The val-
ues of the system parameters that define the operating point are:
Pm = 1 p.u., V1 = 1.2649 p.u., xe = 0.4 p.u., and Vref = 1.0762 p.u.
With these parameters, the equilibrium point corresponds to the
following values for the state variables: deq = 34.7 degrees, xeq = 1 -
p.u., E0qeq ¼ 1 p:u:, and Efdeq = 0.9289 p.u. (where the subscripts eq
denote equilibrium values).

Linearizing the system around the above operating point by
truncated Taylor series expansion yields a linear representation
of the system dynamics in the vicinity of this point. An eigenanal-
ysis of this linear representation shows that, although stable,
these dynamics exhibit a very poorly damped oscillatory behav-
ior, given by the complex conjugate pair of eigenvalues
�0.0007 ± j0.0738. Therefore, a PSS must be employed to enhance
the small-signal stability margin of the system. Using the proce-
dure depicted in [11]., the following parameters were determined
for this PSS: Kpss = 1.5 p.u./p.u., Tw = 3.0 s, T1 = T3 = 0.70 s, and
T2 = T4 = 0.11 s.
~E'
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V V
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Fig. 3. Single line diagram of the first (SMIB) tested system.
We are now faced with the following problem: although the
closed loop linear model, including the designed PSS, exhibits a
stable and well-damped behavior, how precise is the linear model
in predicting the nonlinear behavior of the system? There is no
general and definitive answer to this question, and therefore we
must rely on simulation and engineering judgement to evaluate
if (and where) the differences between these two representations
are acceptable.

Since the linear model was produced from the nonlinear one by
truncation of a Taylor series expansion, it is conceivable that these
differences will become larger in those regions of the state-space
which are distant from the equilibrium point around which the
system was linearized. Therefore, we simulated the response of
the system to a series of severe perturbations, aiming to drive
the system to one of those regions. All simulations shown in the se-
quence were performed using MATLAB scripts.

Fig. 4 presents one of these simulations. It shows the re-
sponse of the generator angular speed to a 25% drop in the infi-
nite bus voltage V1 and a 10% raise in the equivalent external
impedance xe, which might be the result of a short circuit hap-
pening somewhere in the transmission network. These faulty
conditions occurred at t = 1 s and lasted until t = 1.256 s. After
that, the fault is cleared and the system returns to its original
configuration.

In Fig. 4, the solid line is the result of a nonlinear simulation,
where the AVR and PSS output limiters were neglected. The dashed
line, which is very close to the solid one, is the result obtained with
the simulation of the linearized system.1 From this figure, it is pos-
sible to conclude that, under the simulated conditions, there is no
significant imprecision when using the linearized model to represent
the dynamics of the nonlinear one.

Fig. 5 presents another comparison between nonlinear and
linear simulations, under the same conditions of the previous
simulation. This time, however, the nonlinear simulation takes
the AVR and PSS output limiters into account. The limits were
chosen as DEfdmin = �DEfdmax = 5 p.u. and DVsmin = �DVsmax = 0.1
p.u. The difference between the dashed and solid lines is evident,
and we can conclude, by analyzing both Figs. 4 and 5, that this
difference is entirely due to the presence of the limiters. Similar
analyses for several other operating points and perturbations led
to the same conclusion.
1 We remark that the simulation of the linearized system is carried out only for the
post-fault system, and starts at the instant of the fault clearance, when the system
returns to its original configuration but the initial conditions are different from the
equilibrium ones.
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The previous analysis made by comparison between Figs. 4 and
5 shows that, under the simulated conditions, the linearized model
provides a good approximation of the nonlinear dynamics when
the limiters are neglected, but there is significant imprecision
when they are considered and the dynamics is such that leads
them to be activated along the system trajectory. Due to this fact,
it becomes clear that the validity of the linearized model is re-
stricted to the region where the limiters are not active.

However, suppose that the simulated perturbation is very likely
to occur in the system. If we accept the above restriction, we are
left with no alternative but to perform a nonlinear simulation in
order to accurately study the system behavior. On the other hand,
suppose we perform a simulation of the linearized model, taking
the limiters as the only nonlinear elements modelled in this simu-
lation. Fig. 6 presents such a simulation, under the same conditions
in which Figs. 4 and 5 were obtained, and compares the full nonlin-
ear simulation results with the ones from the simulation of the lin-
earized system, both taking the limiters into account. The dashed
line is nearly unrecognizable, which shows that, for the simulated
conditions, the linearized model with limiters is a good approxima-
tion of the fully nonlinear one. This was also confirmed for several
other operating conditions and perturbations, and leads to the idea
that we might use the linearized model with limiters to study the
behavior of the nonlinear one, even in some parts of the regions
where the limiters are active.
0 2 4 6 8 10
374

375

376

377

378

379

380

Nonlinear Sim. (w/ limiters)

Linear Sim. (w/ limiters)

time [s]

om
eg

a 
[ra

d/
s]

Fig. 6. Comparison between responses of the linearized (dashed line) and nonlinear
(solid line) models – limiters in both models.
Of course, we should not expect this approach to provide good
results as the system operating point drifts arbitrarily far away
from the equilibrium conditions during the transient. If the operat-
ing conditions are significantly distant from the equilibrium, other
nonlinearities that were discarded in the linearized model with
limiters will introduce significant errors in the approximation. An-
other problem is that the response of the linearized model with
limiters cannot be described in terms of the eigenvalues associated
with the linear state-space representation of the system. Therefore,
for our selected list of operating conditions and contingencies
(which is commonly available at the system utilities), we would
like to check if the linearized model with limiters can provide
any information about the nonlinear one, and in which regions of
the state-space this information can be trusted.

The algorithm presented in the previous section is particularly
suited for this verification, with regard to the property of stability.
To apply this algorithm, we created a contingency list containing
perturbations resulting in either 25% drops or raises in the infinite
bus voltage V1, lasting for, respectively, 64, 128, 256 or 512 ms.
After these periods, the fault is cleared and the system returns to
its original configuration, but the initial conditions of the post-fault
system are different from the equilibrium ones and cause the
dynamics of the system to either start within or cross the regions
where the limiters are active. The combination of the mentioned
variations in V1 and fault durations produced a total of 8 different
initial operating conditions.

Using these operating conditions and applying the algorithm
presented in Section 3, it was possible to find a P matrix2 such that
�(P,1) is an estimate of the attraction area for the system (11), con-
sidering (13) and (14), which is the linearized model with limiters.
Since we have observed in Fig. 6 that the response of the linearized
model with limiters satisfactorily matches the response of the non-
linear system power system model (with the addition of the PSS), we
can consider �(P,1) as an estimate of the attraction area for this non-
linear system.

Indeed, Figs. 7 and 8 show, respectively, the projection of the set
�(P,1) over the Dd versus Dx plane and over the DE0q versus DEfd

plane in the state space (these projections are indicated by the
thick dotted lines in both figures). The conditions for the simula-
tions shown in these figures are the same conditions of the simu-
lations presented in Figs. 4, 6 and 5. However, to show that this
2 The SeDuMi [15] and YALMIP [16] packages were used to implement the
algorithm proposed in Section 3.



Quadrature axis voltage deviation [p.u.]

Fi
el

d 
vo

lta
ge

 d
ev

ia
tio

n 
[p

.u
.]

−1 −0.5 0 0.5 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

Fig. 9. Magnified view (centered at the origin) along the D Efd axis of Figure 8.
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estimate of the attraction area is robust with respect to differences
in the initial conditions, the fault duration was modified to 200 ms.

In Fig. 8, the dash–dotted straight lines define the frontiers of
the region where the AVR limiters are not active. From this figure,
we can see that the obtained estimate to the attraction area is
much larger than the region where the limiters are not active.3

Therefore, as far as stability is concerned, there is a guarantee that,
for the simulated conditions, the system will be stable provided
that its trajectory remains within the set �(P,1).

Zooming towards the origin of Fig. 8, we obtain Fig. 9, which
shows that the dynamics of the linearized system with limiters
(represented again by the dashed thin line) is a good approxima-
tion of the nonlinear system dynamics (represented by the solid
thin line). This is also confirmed in Fig. 7.

Now, to demonstrate the applicability of the proposed approach
to multimachine systems, a new series of tests was conducted over
a 4-generator system, which is a well-known benchmark test sys-
tem for small-signal stability studies and whose complete set of
3 We must recall that, since the AVR output limits are given by windup limiters
(this assumption is also made in [2]), during the period in which the system operates
within the regions where the limiters are active, the actual voltage applied to the field
circuit is either the upper or the lower field voltage limit, depending on which region
the system is operating.
data can be obtained from [2]. The single line diagram for this sys-
tem is presented in Fig. 10. Generator 3 was modeled as an infinite
bus, and the limits for the controller outputs in all of the other 3
generators were again chosen as DEfdmini = �D Efdmaxi = 5 p.u. and
DVsmini = �DVsmaxi = 0.1 p.u., i = 1,. . .,3.

The contingency list for the application of the algorithm to this
4-generator system was based on the tripping, at t = 200 s, of the
circuit brakers in the lines that connect buses 7 and 9 through
bus 8, followed by the automatic reclosure of the lines, at t = tr,
which restores the original configuration of the system. In this sec-
ond series of tests, 10 different initial conditions were generated by
the variation of tr from 10 to 100 ms, in steps of 10 s.

To compare the results provided by the nonlinear and linear
simulations, both considering the limiters, the same contingency
mentioned in the previous paragraph was applied, this time with
tr = 85 ms. Fig. 11 shows the response of the rotor speed of gener-
ator 2 for both the nonlinear and linear simulations, taking the lim-
iters into account in both cases. It is clear from Fig. 11 that the
simulation of the linearized model with limiters can provide a good
approximation of the response of the nonlinear model to the same
contingency.

Fig. 12 shows the estimate of the attraction area for the linear-
ized model with limiters (thick dotted ellipsoid), and the nonlinear
response of the system is plotted within this estimate (solid line).
The region where the limiters are active is also shown in Fig. 12
(dash–dotted horizontal lines). It is possible to see that the re-
sponse of the nonlinear system actually hits the AVR output limits
during the transient, so the corresponding contingency would not
be considered as a small perturbation in the usual sense, yet it
200 205 210 215 220 225
time [s]

Fig. 11. Comparison between responses of the rotor speed of generator 2 in the
linearized (dashed line) and nonlinear (solid line) models – tr = 85 ms and limiters
in both models.
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poses no threat to system stability, since it is clear from Figs. 11
and 12 that this response is stable.

To complete the analysis, Fig. 13 shows the response of the ro-
tor speed of generator 2 to the same type of contingency used to
plot the two previous figures, but this time with tr = 750 ms. The
initial condition for the simulation of the linearized model with
limiters is now outside the calculated estimate of its attraction
area, and it is clear from Fig. 13 that this linear simulation is not
able to precisely represent the trajectory of the nonlinear model,
even though the limiters have been taken into account. Therefore,
Fig. 13 offers one more piece of evidence that the estimate of the
attraction area given by the algorithm proposed in this paper can
be used to distinguish between large and small perturbations in
power systems.

5. Conclusions

In this paper, we investigated the possibility of using a linear-
ized power system model (with the inclusion of AVR and PSS out-
put limiters) to evaluate the stability and estimate the attraction
area of the system in a particular operating condition. Several com-
parisons between the responses of the linearized model with lim-
iters and of the fully nonlinear model were carried out and showed
that, for the analyzed operating conditions, it is indeed possible to
accurately represent the dynamics of the nonlinear model by the
linearized model with the inclusion of limiters.

An algorithm to estimate the attraction area of the linearized
system with limiters was proposed. Such an estimate can be useful
for defining the region of safe operation for the generators, with
less stringent or conservative requirements than the ones arising
from the consideration that the linear models are only valid in
the region where the limiters are not active.

This estimate of the attraction area provides a nice and less
stringent criterion for distinguishing between large and small per-
turbations in power system, as opposed to the one which states
that the AVR and PSS output limiters cannot be reached during
the transient period for a contingency to be considered as a small
perturbation. Furthermore, the possibility of representing the non-
linear system dynamics with accuracy by a linearized model with
limiters is also potentially useful, since less time consuming simu-
lations can be performed when using this linearized model with
limiters. This topic, however, requires a more careful investigation,
which is among the future directions of this work.

Other predicted developments of this research include the
assessment of other nonlinearities that may affect the precision
of the description given by the linearized model (such as machine
saturation, for example) and an evaluation of the robustness of the
attraction area estimates given by this approach to variations in
the operating point of the power system.
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