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Abstract—Support vector machine (SVM) has met with significant success in 

numerous real-world learning tasks. In this project, SVM is implemented to 

classify cells into two classes: benign or malignant. Different kinds of SVMs with 

different kinds of margins (hard margin and soft margin) and kernels (linear 

kernel and polynomial kernel) are carried out. Then the classifying 

performances of these SVMs are compared.  

 

Index Terms—SVM, hard margin, soft margin, linear kernel, polynomial kernel 

 

I. INTRODUCTION 

  Support vector machine has strong theoretical foundations and excellent empirical 

successes. It has been applied to tasks such as handwritten digit recognition, object 

recognition, and text classification. Besides, it has been shown good performances in 

multiple areas of biological analysis such as evaluating microarray expression data, 

detecting remote protein homologies
2
.  

  Here SVM is implemented to classify the cancer cells into two groups: benign cells 

and malignant cells. The data used in this project is the Wisconsin Diagnostic Breast 

Cancer (WDBC) Data Set. The data set consists of training data and test data. The 

training data includes 285 samples, each consisting of 30 real-valued features that 

have been computed from a digitized image of a fine needle aspirate of a breast mass. 

The test data consists of 100 samples, with the same structure as the samples in the 

training data. The training data is used to train the SVM to perform proper 

classification. Then the classifying performance of SVM is tested with the test data.  
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  In this project, SVMs with different structures are carried out, including: 

hard-margin SVM with the linear kernel, hard-margin SVM with a polynomial kernel, 

soft-margin SVM with a polynomial kernel. The constraint parameters p and C are 

varied to investigate how they affect the performance of SVM. Training accuracy and 

test accuracy are used to evaluate the performance. The training accuracy is defined 

by the number of samples correctly classified in the training data set. And the test 

accuracy is defined by the number of samples correctly classified in the test data set. 

  The remainder of the report is structured as follows. Section 2 illustrates the 

principles and structures of SVM. Section 3 presents the simulation of SVM method 

demonstrated in section 2. Conclusions and some discussions of the results are 

presented in section 4.  

 

II. Support Vector Machine 

SVM is a relatively new type of learning algorithm, firstly developed by Vapnik 

and co-workers
2
. When used for classification, it separates the data labeled by -1 and 

1 with a hyper-plane, as is shown in Figure 2.1. 

 

 

Figure 2.1 A simple linear SVM 



2.1 Hard Margin SVM  

  The geometric margin of one sample is defined as
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functional margin of one sample. The geometric margin of the data set is defined as
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fr  is the functional margin of the data set. The key point of SVM 

is to get the maximal
gr . 

  We can maximize 
gr  by fixing 

fr  then minimizing w . Thus we get the 

constrained optimization problem: minimizing 
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  According to Kuhn-Tuck theory, we have the KKT conditions: 
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  Extracting the above equations, we can obtain: 0
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Furthermore, the original optimization problem can be transformed to the dual 

problem: maximizing 
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Solving the dual problem we can obtain Lagrangian multiplier i . For a support 

vector sx , we can obtain: 
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  Thus, the discrimination function is: 
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  Therefore, for the input x , the output of the SVM is: sgn[ ( )]g x             (2.5) 

2.2 Soft Margin SVM  

  Compared with hard margin SVM, another constraint parameter C is introduced to 

soft margin SVM. The consequence procedure is similar to that used in 2.1. The 

primal problem is minimizing 
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0 i C  , for i=1,2…N.  

It can be seen that the only difference from hard margin is the constraint i  in the 

dual problems. In the soft margin, i  is constrained by an upper bound C. Then we 

can get the same discrimination function as 2.4 and the same output function as 2.5. 

But we should notice that when determining ob , we should take any data point (xi, di) 

in the training set for which we have 0 i C  . In our simulations, we take the 

value of ob  resulting from such data points in the training set.  

 

2.3 Soft Margin SVM with Kernel 

  SVM with kernel can work in case that linear separation is impossible. The dual 



problem is 
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and 0 i C  , for i=1,2…N. The discrimination function is: 
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  Note that ob  should be determined in the same way as that in 2.2.  

  Thus, the output of SVM is: 0
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III. Simulations and Results 

3.1 Simulations 

In this section, three different SVMs are simulated to perform the classification task. 

The first one is hard-margin SVM with the linear kernel: 1 2 1 2( , ) TK x x x x . The linear 

kernel equals to the model presented in 2.1.  

The second one is hard-margin SVM with the polynomial kernel:

1 2 1 2( , ) ( 1)T pK x x x x  . In the simulation, the parameter p varies to be 2, 3, 4 and 5.  

  The third one is soft-margin SVM with the polynomial kernel. In this simulation, 

the parameter C varies to be 0.1, 0.6, 1.1 and 2.1 and p varies to be 2, 3, 4 and 5. 

  The SVM is trained by the training data and the discrimination function can be 

obtained. Then the training data and test data were substituted into SVM and we can 

get the corresponding outputs of SVM. The training accuracy and test accuracy are 

considered to evaluate the performance of SVM. The training accuracy is defined by 

the number of samples correctly classified in the training data set. And the test 

accuracy is defined by the number of samples correctly classified in the test data set. 

The results of SVM classification are shown in Table 3.1.  



Table 3.1 Results of SVM classification 

Type of SVM Training Accuracy (per 285) Test Accuracy (per 100) 

Hard Linear 285 95 

Hard 

Polynomial 

P=2 P=3 P=4 P=5 P=2 P=3 P=4 P=5 

 285 285 285 285 95 96 96 95 

Soft Polynomial C=0.1 C=0.6 C=1.1 C=2.1 C=0.1 C=0.6 C=1.1 C=2.1 

P=2 281 282 285 285 97 97 96 95 

P=3 285 285 285 285 96 96 96 96 

P=4 285 285 285 285 96 96 96 96 

P=5 285 285 285 285 95 95 95 95 

 

3.2 Comments on the Results 

  It can be seen from Table 3.1 that for hard margin SVM with linear kernel, the 

training accuracy is 100% and the test accuracy is 95%. The total accuracy is 380/385.  

  When polynomial kernel is introduced, the training accuracy doesn’t change, while 

the test accuracy changes. When the kernel parameter p=2, the test accuracy is 95/100, 

which is the same as that in hard margin SVM with linear kernel. When p=3 or 4, the 

test accuracy is 96/100, which is a little larger. However, if p=5, the test accuracy 

decreases to 95/100. Furthermore, if p is chosen too large, the training accuracy and 

test accuracy will fall in an obvious degree. Thus we can conclude that polynomial 

kernel can improve the performance of SVM in case that the parameter p is not too 

small or too large. The best case is with training accuracy of 285/285, test accuracy of 

96/100 and the total accuracy of 381/385.  

  In the case of soft margin SVM with polynomial kernel. When p=2, it can be seen 

that smaller C can improve the test accuracy. In contrary, smaller C results in lower 

training accuracy. Besides, if C is too small (smaller than 0.05), the training accuracy 

will decrease quickly in a great degree and the training accuracy will fall accordingly. 



Thus we can conclude that a large C results in larger training accuracy within some 

scope and a small C results in smaller training accuracy.  

  Besides, it is shown that when p=3 and C=0.6, the training accuracy is 282/285, test 

accuracy of 97/100. When p=3 and C=1.1, the training accuracy is 285/285, test 

accuracy of 96/100. Thus is can be concluded that higher training accuracy may not 

lead to higher test accuracy.  

  Furthermore, we can find that when p is larger than 2, the training accuracy is 100% 

even C is small. This shows that kernel can carry out classification in the case that 

linear separation is impossible. Also when p is larger than 2, C can’t affect the test 

accuracy obviously. The best case is with training accuracy of 285/285, test accuracy 

of 96/100 and the total accuracy of 381/385.  

 

IV. Conclusions 

  In this project, SVM is implemented to classify cancer cells. The achievable highest 

total accuracy is 381/385. The results indicate that SVM is able to realize the 

classification.  

It is also concluded that polynomial kernel and soft margin can improve the 

classifying performance of SVM. A large soft-margin parameter C leads to larger 

training accuracy within some scope and a small C leads to smaller training accuracy. 

While if C is too small (smaller than 0.05), the training accuracy will decrease quickly 

in a great degree. Furthermore, it is showed that kernel can carry out classification in 

the case that linear separation is impossible. If p is chosen properly (p=3 or 4), the 

training accuracy will be 100% and the test accuracy will be higher. While if p is too 

large, the training accuracy and test accuracy will decrease greatly.  
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