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Design and Analysis of a Novel L1 Adaptive Control
Architecture With Guaranteed Transient Performance

Chengyu Cao and Naira Hovakimyan

Abstract—This paper presents a novel adaptive control architecture that
adapts fast and ensures uniformly bounded transient response for sys-
tem’s both signals, input and output, simultaneously. This new architec-
ture has a low-pass filter in the feedback loop and relies on the small-gain
theorem for the proof of asymptotic stability. The tools from this paper
can be used to develop a theoretically justified verification and valida-
tion framework for adaptive systems. Simulations illustrate the theoretical
findings.

Index Terms—Fast and robust adaptation, guarteed transient perfor-
mance, scaled response.

I. INTRODUCTION

This paper presents a novel adaptive control architecture that leads to
quantifiable performance bounds for a system’s both signals, input and
output, simultaneously. Performance bounds of adaptive controllers
have been addressed in numerous publications [1]–[8], to name a few.
However, as compared to linear systems theory, several important as-
pects of the transient performance analysis seem to be missing in these
papers. First, all the bounds in these papers are computed for tracking
errors only, and not for control signals. Although the latter can be de-
duced from the former, it is straightforward to verify that the ability
to adjust the former may not extend to the latter in case of nonlin-
ear control laws. Second, since the purpose of adaptive control is to
ensure stable performance in the presence of modeling uncertainties,
one needs to ensure that both signals of the system, input and output,
retain uniform performance despite the changes in reference input and
unknown parameters due to possible faults or unexpected disturbances.
Finally, one needs to ensure that whatever modifications or solutions
are suggested for performance improvement of adaptive controllers,
they are not achieved via high-gain feedback.

In this paper, we define a new type of model following adaptive
controller that adapts fast leading to desired transient performance for
system’s both input and output signals simultaneously. The small-gain
theorem is invoked for the proof of asymptotic stability. The ideal
(nonadaptive) version of this L1 adaptive controller is used along with
the main system dynamics to define a closed-loop reference system,
which gives an opportunity to estimate performance bounds in terms of
L∞ norms for the system’s both signals. Design guidelines for the low-
pass filter ensure that the closed-loop reference system approximates
the desired system response, despite the fact that it depends upon the
unknown parameter.

The paper is organized as follows. Section II states some prelim-
inary definitions, and Section III gives the problem formulation. In
Section IV, the new L1 adaptive controller is presented, the perfor-
mance analysis of which is in Section V. Design guidelines are pro-
vided in Section VI. Unless otherwise mentioned, the notation ‖ · ‖ is
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used for the 2-norm of vectors, and χ(s) is used to denote the Laplace
transform of χ(t).

II. PRELIMINARIES

In this section, we recall basic definitions and facts from linear
systems theory [9], [10].

Definition 1: For a signal ξ(t) = [ξ1 (t) · · · ξn (t)] ∈ R
n defined

for all t ≥ 0, the truncated L∞ norm and the L∞ norm are ‖ξt‖L∞ =
maxi=1 , . . . ,n (sup0≤τ ≤t |ξi (τ )|), ‖ξ‖L∞ = maxi=1 , . . . ,n (supτ ≥0 |ξi (τ )|).

Definition 2: The L1 gain of an asymptotically stable and proper
single-input single-output (SISO) system is defined as ||H(s)||L1 =∫ ∞

0 |h(t)|dt, where h(t) is the impulse response of H(s).
Definition 3: For an asymptotically stable and proper m input

n output system H(s), the L1 gain is defined as ‖H(s)‖L1 =
maxi=1 , . . . ,n (

∑m

j=1 ‖Hij (s)‖L1 ), where Hij (s) is the ith row jth col-
umn entry of H(s).

Lemma 1: For an asymptotically stable proper multi-input multi-
output (MIMO) system H(s) with input r(t) ∈ R

m and output x(t) ∈
R

n , we have

‖xt‖L∞ ≤ ‖H(s)‖L1 ‖rt‖L∞ ∀t ≥ 0. (1)

Corollary 1: For an asymptotically stable proper MIMO system
H(s), if the input r(t) ∈ R

m is bounded, then the output x(t) ∈ R
n is

also bounded, and ‖x‖L∞ ≤ ‖H(s)‖L1 ‖r‖L∞ .
Lemma 2: For a cascaded system H(s) = H2 (s)H1 (s), where

H1 (s) and H2 (s) are asymptotically stable proper systems, we have
‖H(s)‖L1 ≤ ‖H2 (s)‖L1 ‖H1 (s)‖L1 .

Theorem 1: ( [9], Theorem 5.6) (L1 Small-Gain Theorem): The
interconnected system w2 (s) = ∆(s)(w1 (s)−M (s)w2 (s)) with in-
put w1 (t) and output w2 (t) is asymptotically stable if ‖M (s)‖L1

‖∆(s)‖L1 < 1.
Consider a linear time-invariant (LTI) system: x(s) = (sI−A)−1

bu(s) with Hurwitz A ∈ R
n×n matrix, and let (sI−A)−1 b =

n(s)/d(s), where d(s) = det(sI−A), and n(s) is an n-dimensional
vector with its ith element being a polynomial function ni (s) =∑n

j=1 nij s
j−1 .

Lemma 3: If (A ∈ R
n×n , b ∈ R

n ) is controllable, the matrix N with
entries nij is full rank.

Proof: Controllability of (A, b) implies reachability. Hence, given
an initial condition x(t0 ) = 0 and arbitrary xt1 = x(t1 ), there exists
u(τ ), τ ∈ [t0 , t1 ] such that x(t1 ) = xt1. If N is not full rank, then
there exists a µ �= 0, such that µ n(s) = 0. Thus, for x(t0 ) = 0, one
has µ x(τ ) = 0, ∀τ > t0 . This contradicts x(t1 ) = xt1 , in which xt1

was an arbitrary point. Thus, N must be full rank. �
Lemma 4: If (A, b) is controllable and (sI−A)−1 b is asymptotically

stable, there exists c ∈ R
n such that c (sI−A)−1 b is minimum phase

with relative degree 1.
Proof: Since c (sI−A)−1 b = (c N [sn−1 · · · 1] )/d(s), we

choose c̄ ∈ R
n such that c̄ [sn−1 · · · 1] is an asymptotically stable

n − 1 order polynomial. Let c = (N−1 ) c̄. Then, c (sI−A)−1 b =
c̄ [sn−1 · · · 1] /d(s) has relative degree 1 with all its zeros in the
left half plane. �

III. PROBLEM FORMULATION

Consider the following SISO system dynamics

ẋ(t) = Ax(t) + b(u(t)− θ x(t)) y(t) = c x(t) x(0) = x0

(2)
where x(t) ∈ R

n is the system state vector (measurable), u(t) ∈ R is
the control signal, b, c ∈ R

n are known constant vectors, A is a known
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n × n matrix, (A, b) is controllable, the unknown parameter θ ∈ R
n

belongs to a given compact convex set θ ∈ Ω, and y(t) ∈ R is the
regulated output.

The control objective is to design an adaptive controller to ensure
that the system output y(t) follows a given reference signal r(t) with
quantifiable transient and steady-state performance bounds.

IV. L1 ADAPTIVE CONTROLLER

Consider the following control structure

u(t) = u1 (t) + u2 (t) u1 (t) = −K x(t) (3)

where K renders Am = A − bK Hurwitz, while u2 (t) is generated
by the adaptive controller. It leads to the following system:

ẋ(t) = Am x(t)− bθ x(t) + bu2 (t) y(t) = c x(t) x(0) = x0 .

(4)

For the linearly parameterized system in (4), we consider the following
state predictor

˙̂x(t) = Am x̂(t)− bθ̂ (t)x(t) + bu2 (t) ŷ(t) = c x̂(t) x̂(0) = x0

(5)
along with the projection-type adaptive law for θ̂(t)

˙̂
θ(t) = ΓProj(θ̂(t), x(t)x̃ (t)Pb) θ̂(0) = θ̂0 x̃(t) = x̂(t)−x(t)

(6)

where Γ > 0 is the adaptation gain, and P = P  > 0 solves A 
m P +

PAm = −Q for some Q > 0. Let

u2 (s) = C(s)(r̄(s) + kg r(s)) kg = 1/(c Ho (0))

Ho (s) = (sI−Am )−1 b (7)

where r̄(t) = θ̂ (t)x(t), while C(s) is an asymptotically stable and
strictly proper transfer function with dc gain C(0) = 1. The L1 adap-
tive controller consists of (3), (5), (6), and (7), with K and C(s) such
that

λ
�
= ‖Ḡ(s)‖L1 θm ax < 1 Ḡ(s) = Ho (s)(C(s) − 1)

θm ax = max
θ∈Ω

n∑
i=1

|θi |. (8)

We notice that the condition in (8) can be straightforwardly satis-
fied by increasing the bandwidth of C(s) (refer to Lemma 8 later in
Section VI). We further notice that x̂(s) = Ḡ(s)r̄(s) + G(s)r(s) +
(sI−Am )−1x0 , G(s) = kg Ho (s)C(s).

V. ANALYSIS OF L1 ADAPTIVE CONTROLLER

Consider the following ideal version of the adaptive controller in
(3), (7):

uref (s) = C(s)(θ xref (s) + kg r(s)) −K xref (s). (9)

Notice that C(s) = 1 leads to the reference model of model reference
adaptive control (MRAC). The controller in (9) leads to the following
relation

xref (s) = Ho (s)(kg C(s)r(s) + (C(s)− 1)θ xref (s)) + (sI−Am)−1x0

yref (s) = c xref (s) (10)

which can be explicitly solved for xref (s) yielding

xref (s) = (I− Ḡ(s)θ )−1G(s)r(s) + xin (s)

xin (s) = (I− Ḡ(s)θ )−1 (sI−Am )−1x0 . (11)

Lemma 5: If ‖Ḡ(s)‖L1 θm ax < 1, then (I− Ḡ(s)θ )−1 and (I−
Ḡ(s)θ )−1G(s) are asymptotically stable.

Proof: It follows from Definition 3 that ‖Ḡ(s)θ ‖L1 = maxi=1 , . . . ,n

(‖Ḡi (s)‖L1 (
∑n

j=1 |θj |)) . We have
∑n

j=1 |θj | ≤ θm ax , and hence,

‖Ḡ(s)θ ‖L1 ≤ maxi=1 , . . . ,n (‖Ḡi (s)‖L1 )θm ax = ‖Ḡ(s)‖L1 θm ax . The
relationship in (8) implies that ‖Ḡ(s)θ ‖L1 < 1, and therefore,
Theorem 1 ensures that the LTI system (I− Ḡ(s)θ )−1 is asymp-
totically stable. Lemma 2 implies that (I− Ḡ(s)θ )−1G(s) is asymp-
totically stable. �

Consider the Lyapunov function candidate: V (x̃(t), θ̃(t)) =
x̃ (t)P x̃(t) + θ̃ (t)Γ−1 θ̃(t), where θ̃(t) = θ̂(t)− θ. It follows from
(4) and (5) that

˙̃x(t) = Am x̃(t)− bθ̃ (t)x(t) x̃(0) = 0. (12)

It is straightforward to verify that V̇ (t) ≤ −x̃ (t)Qx̃(t) ≤ 0, which
is independent of u2 (t). This implies that x̃(t) and θ̃(t) are bounded.
To prove asymptotic convergence of x̃(t) to zero, one needs to ensure
that x̂(t) in (5) is uniformly bounded.

Lemma 6: For the system in (2) and the controller defined via (3),
(5), (6), (7), and (8), we have:

||x̃(t)|| ≤
√

θ̄m ax/(λm in (P )Γ), ∀t ≥ 0

θ̄m ax
�
= max

θ∈Ω

n∑
i=1

4θ2
i , and lim

t→∞
x̃(t) = 0. (13)

Proof: Since x̃(0) = 0, then λm in (P )‖x̃(t)‖2 ≤ V (t) ≤ V (0) =
θ̃ (0)Γ−1 θ̃(0), where λm in (P ) is the minimum eigenvalue of P . Thus,

‖x̃(t)‖2 ≤ V (0)/λm in (P ). Therefore, ||x̃(t)|| ≤
√

θ̄m ax/λm in (P )Γ,

and also, ‖x̃t‖L∞ ≤
√

V (0)/λm in (P ). Notice that |‖x̂t‖L∞ −
‖xt‖L∞| ≤

√
V (0)/λm in (P ). The projection in (6) ensures θ̂(t) ∈

Ω. Since ‖r̄t‖L∞ ≤ θm ax‖xt‖L∞ , substituting for ‖xt‖L∞ leads
to ‖r̄t‖L∞ ≤ θm ax (‖x̂t‖L∞ +

√
V (0)/λm in (P )). Lemma 1 im-

plies ‖x̂t‖L∞ ≤ ‖Ḡ(s)‖L1 ‖r̄t‖L∞ + ‖G(s)‖L1 ‖rt‖L∞ , which leads

to ‖x̂t‖L∞ ≤ (λ
√

V (0)/λm in (P ) + ‖G(s)‖L1 ‖rt‖L∞)/(1 − λ). As
a result, ‖x̂t‖L∞ is finite for any t ≥ 0, and hence, x̂(t) is
bounded. Thus, ˙̃x(t) is bounded, and Barbalat’s lemma implies that
limt→∞x̃(t) = 0. �

Letting r1 (t) = θ̃ (t)x(t), notice that r̄(t) = θ (x̂(t)− x̃(t)) +
r1 (t). Hence, the state predictor can be rewritten as x̂(s) =
(I− Ḡ(s)θ )−1 (−Ḡ(s)θ x̃(s) + Ḡ(s)r1 (s) + G(s)r(s)) + xin (s).
It follows from (12) that x̃(s) = −Ho (s)r1 (s). Using (8), the
predictor can be presented as x̂(s) = (I− Ḡ(s)θ )−1G(s)r(s) +
(I− Ḡ(s)θ )−1 (−Ḡ(s)θ x̃(s)− (C(s)− 1)x̃(s)) + xin (s). Using
xref (s) from (11) and recalling the definition of x̃(s) = x̂(s)− x(s),
one arrives at

x(s) = xref (s)− (I + (I− Ḡ(s)θ )−1 (Ḡ(s)θ + (C(s)− 1)I))x̃(s).

(14)
The expressions in (3), (7), and (9) lead to the following expression of
the control signal

u(s) = uref (s) + C(s)r1 (s) + (C(s)θ −K )(x(s) − xref (s)).

(15)

We note that (A − bK , b) is the state space realization of Ho (s).
Since (A, b) is controllable, then (A − bK , b) is also controllable.
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Lemma 4 implies that there exists co ∈ R
n and asymptotically stable

polynomials Nd (s) and Nn (s) such that c o Ho (s) = Nn (s)/Nd (s),
where deg(Nd (s))− deg(Nn (s)) = 1.

Theorem 2: For the system in (2) and the controller in (3), (5), (6),
(7), and (8), we have

lim
t→∞

‖x(t)− xref (t)‖ = 0 lim
t→∞

|u(t)− uref (t)| = 0 (16)

‖x− xref ‖L∞ ≤ γ1/
√

Γ ‖u − uref ‖L∞ ≤ γ2/
√

Γ (17)

where γ1 = ‖H2 (s)‖L1

√
θ̄m ax/λm in (P ), H2 (s) = I + (I− Ḡ(s)

θ )−1 (Ḡ(s)θ + (C(s) − 1)I), γ2 = ‖C(s)[1/c o Ho (s)]c o ‖L1√
θ̄m ax/λm in (P ) + ‖C(s)θ −K ‖L1 γ1 .
Proof: Let r2 (t) = xref (t)− x(t). It follows from (14) that r2 (s) =

(I + (I− Ḡ(s)θ )−1 (Ḡ(s)θ + (C(s)− 1)I))x̃(s). The signal r2 (t)
can be viewed as the response of the LTI system H2 (s) to the bounded
error signal x̃(t). Lemma 5 implies that (I− Ḡ(s)θ )−1 , Ḡ(s), C(s)
are asymptotically stable, and therefore, H2 (s) is asymptotically
stable. Hence, from (13), we have limt→∞ r2 (t) = 0. Let r3 (s) =
C(s)r1 (s) + (C(s)θ −K )(x(s) − xref (s)). It follows from (15)
that r3 (t) = u(t)− uref (t), while the relationships in (12) and (13)
imply that limt→∞ r1 (t) = 0, and therefore, limt→∞ r3 (t) = 0.

Using Lemma 1, from (13) one can derive the following upper
bound ‖r2‖L∞ ≤ ‖H2 (s)‖L1

√
θ̄m ax/λm in (P )Γ, which leads to

‖x− xref ‖L∞ ≤ γ1/
√

Γ. From x̃(s) = −Ho (s)r1 (s), we have
r3 (s) = C(s)[c o Ho (s)r1 (s)]/[c o Ho (s)] + (C(s)θ −K )(x(s) −
xref (s)) = −C(s)[1/c o Ho (s)]c o x̃(s) + (C(s)θ − K )(x(s)−
xref (s)). Since C(s) is asymptotically stable and strictly proper,
the complete system C(s)[1/c o Ho (s)] is proper and asymptotically
stable, which implies that its L1 gain is finite. Hence, ‖r3‖L∞ ≤
‖C(s)[1/c o Ho (s)]c o ‖L1 ‖x̃‖L∞ + ‖C(s)θ −K ‖L1 ‖x− xref ‖L∞ ,
which leads to the second upper bound in (17). �

From (11), it follows that yref (s) = c (I− Ḡ(s)θ )−1G(s)r(s) +
c xin (s). If r(t) is constant, the final value theorem ensures
limt→∞ yref (t) = c Ho (0)C(0)kg r = r, and hence, (16) implies
limt→∞ y(t) = r.

Remark 1: Theorem 2 implies that by increasing the adaptive gain,
the time histories of x(t) and u(t) can be made as close as possible
to xref (t) and uref (t) for all t ≥ 0. This, in turn, reduces the control
objective to selection of K and C(s) to ensure that the reference LTI
system has the desired response.

Remark 2: Notice that if we set C(s) = 1, which corresponds to
MRAC, ‖C(s)[1/c o Ho (s)]c o ‖L1 cannot be finite, since Ho (s) is
strictly proper. Therefore, γ2 →∞, and hence, for the control signal
of MRAC, one cannot conclude a uniform performance bound from
(17).

VI. DESIGN OF THE L1 ADAPTIVE CONTROLLER

Notice that the closed-loop reference system in (9) and (11) depends
upon the unknown parameter θ. Consider the following signals

xdes (s) = G(s)r(s) + xin (s) = C(s)kg Ho (s)r(s) + xin (s)

ydes (s) = c xdes (s) (18)

udes (s) = kg C(s)(1 + C(s)θ Ho (s)−K Ho (s))r(s). (19)

Lemma 7: Subject to (8), the following upper bounds hold

‖yref − ydes‖L∞ ≤
λ

1 − λ
‖c ‖L1 ‖G(s)‖L1 ‖r‖L∞

‖yref − ydes‖L∞ ≤
1

1 − λ
‖c ‖L1 ‖h3‖L∞ (20)

‖uref − udes‖L∞ ≤
λ

1 − λ
‖C(s)θ −K ‖L1 ‖G(s)‖L1 ‖r‖L∞ (21)

‖uref − udes‖L∞ ≤
1

1 − λ
‖C(s)θ −K ‖L1 ‖h3‖L∞ (22)

where h3 (t) is the inverse Laplace transform of H3 (s) = (C(s)−
1)C(s)r(s)kg Ho (s)θ Ho (s).

Proof: It follows from (11) that yref (s) = c (I− Ḡ(s)θ )−1

G(s)r(s) + c xin (s). Following Lemma 5, the condition in (8) en-
sures the stability of the reference LTI system. Since (I− Ḡ(s)θ )−1

is asymptotically stable, then one can expand it into convergent series
and further write

yref (s) = c 

(
I +

∞∑
i=1

(Ḡ(s)θ )i

)
G(s)r(s) + c xin (s)

= ydes (s) + c 

(
∞∑

i=1

(Ḡ(s)θ )i

)
G(s)r(s). (23)

Let r4 (s) = c (
∑∞

i=1 (Ḡ(s)θ )i )G(s)r(s). Then, r4 (t) = yref (t)−
ydes (t). Lemma 5 implies that ‖Ḡ(s)θ ‖L1 ≤ λ, and it follows from
Lemma 2 that

‖r4‖L∞≤

(
∞∑

i=1

λi

)
‖c ‖L1‖G(s)‖L1‖r‖L∞=

λ

1−λ
‖c ‖L1‖G(s)‖L1‖r‖L∞.

(24)

From (23), we have yref (s) = ydes (s) + c (
∑∞

i=1 (Ḡ(s)θ )i−1 )
Ḡ(s)θ G(s)r(s), which along with (8) leads to yref (s) = ydes (s) +
c (
∑∞

i=1 (Ḡ(s)θ )i−1 )H3 (s). Lemma 1 immediately implies that
‖r4‖L∞ ≤ (

∑∞
i=1 λi−1 )‖c ‖L1 ‖h3‖L∞ . Comparing udes (s) in (19) to

uref (s) in (9), it follows that udes (s) can be written as
udes (s) = kg C(s)r(s) + (C(s)θ −K )xdes (s), where xdes (s) =
C(s)kg Ho (s)r(s) + xin (s). Therefore, uref (s)− udes (s) = (C(s)
θ −K )(xref (s)− xdes (s)). Hence, it follows from Lemma 1
that ‖uref − udes‖L∞ ≤ ‖C(s)θ −K ‖L1 ‖xref − xdes‖L∞ . Using
the same steps as for ‖yref − ydes‖L∞ , we have ‖xref − xdes‖L∞ ≤
λ/(1 − λ)‖G(s)‖L1 ‖r‖L∞ , ‖xref − xdes‖L∞ ≤ 1/(1 − λ)‖h3‖L∞ ,
which leads to (21) and (22). �

Taking into consideration that xin (t) is exponentially decaying, the
control objective can be achieved via selection of K and C(s), such
that C(s)c Ho (s) defines the desired transient and steady-state perfor-
mance and C(s) minimizes λ or ‖h3‖L∞ . We note that C(s)c Ho (s)
does not depend on the unknown parameters. Considering the fol-
lowing conservative upper bound λ ≤ ‖Ho (s)‖L1 ‖C(s)− 1‖L1 θm ax ,
the aforementioned objectives can be achieved from two differ-
ent perspectives: 1) fix C(s) and minimize ‖Ho (s)‖L1 and 2) fix
Ho (s) and minimize one of the following ‖Ho (s)(C(s)− 1)‖L1 ,
‖(C(s)− 1)r(s)‖L1 , or ‖C(s)(C(s)− 1)‖L1 via the choice of C(s).

1) High-Gain Design: Let C(s) define the desired transient and
steady-state performance. Then minimization of ‖Ho (s)‖L1 can be
achieved by choosing K sufficiently large. Since C(s) is a strictly
proper system containing the dominant poles of the closed-loop system
in kg c Ho (s)C(s) and kg c Ho (0) = 1, we have kg c Ho (s)C(s) ≈
C(s). However, minimization of ‖Ho (s)‖L1 via large K hurts
robustness.

2) MRAC Without High-Gain Feedback: As in MRAC, choose K
such that kg c Ho (s) defines the desired reference system.

Lemma 8: Let C(s) = ω/(s + ω). For any strictly proper asymp-
totically stable system Ho (s), the following is true: limω→∞‖(C(s)−
1)Ho (s)‖L1 = 0.
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Fig. 1. λ1 and λ2 (solid) with respect to ω and constant 1 (dashed).

Proof: Note that (C(s)− 1)Ho (s) = −sHo (s)/(s + ω). Since
Ho (s) is strictly proper and asymptotically stable, ‖sHo (s)‖L1 is finite,
and hence, ‖(C(s)− 1)Ho (s)‖L1 ≤ ‖sHo (s)‖L1 /ω. �

Thus, by increasing the bandwidth of C(s), it is possible to render
‖Ḡ(s)‖L1 arbitrarily small. With large ω, the pole −ω of C(s) will
be dominated by the poles of Ho (s), implying that kg c Ho (s)C(s) ≈
kg c Ho (s).

However, increasing the bandwidth of C(s) is not the only choice
for minimizing ‖Ḡ(s)‖L1 . Since C(s) is a low-pass filter, its comple-
mentary 1 − C(s) is a high-pass filter with its cutoff frequency ap-
proximating the bandwidth of C(s). Then, Ḡ(s) = Ho (s)(C(s)− 1)
is equivalent to cascading a low-pass system Ho (s) with a high-pass
system C(s)− 1. If one chooses the cutoff frequency of C(s)− 1
larger than the bandwidth of Ho (s), the resulting Ḡ(s) is a “no-pass
filter” with arbitrarily small L1 gain. This can be done via higher order
filters.

To minimize ‖h3‖L∞ , we note that ‖h3‖L∞ can be upperbounded
in two ways: ‖h3‖L∞ ≤ ‖(C(s)− 1)r(s)‖L1 ‖h4‖L∞ , where h4 (t)
is the inverse Laplace transform of H4 (s) = C(s)kg Ho (s)θ Ho (s),
and ‖h3‖L∞ ≤ ‖(C(s)− 1)C(s)‖L1 ‖h5‖L∞ , where h5 (t) is the in-
verse Laplace transform of H5 (s) = r(s)kg Ho (s)θ Ho (s). Thus,
‖h3‖L∞ can be minimized by minimizing ‖(C(s)− 1)r(s)‖L1 or
‖(C(s)− 1)C(s)‖L1 . Following the same arguments as before and
assuming finite bandwidth for r(t), one can choose the cutoff fre-
quency of C(s)− 1 larger than the bandwidth of the reference signal
r(t) to minimize ‖(C(s)− 1)r(s)‖L1 . Notice that if C(s) is an ideal
low-pass filter, then C(s)(C(s)− 1) = 0, and hence, ‖h3‖L∞ = 0.

The earlier considerations ensure that C(s) ≈ 1 in the bandwidth of
r(s) and Ho (s). Since kg c Ho (s) defines the desired performance, it
follows from (18) that C(s)kg c Ho (s) ≈ kg c Ho (s).

Remark 3: Theorem 2 and Lemma 7 imply that the L1 adaptive
controller can generate a system response to track (18) and (19) both
in transient and steady state if we set the adaptive gain large and
minimize λ or ‖h3‖L∞ . Notice that udes (t) in (19) depends upon the
unknown parameter θ, while ydes (t) in (18) does not. This implies
that for different values of θ, the L1 adaptive controller will generate
different control signals (dependent on θ) to ensure uniform system
response (independent of θ). This is natural, since different unknown
parameters imply different systems, and to have similar response for
different systems, the control signals have to be different. Here is the
advantage of the L1 adaptive controller in a sense that it controls an
unknown system as an LTI feedback controller would have done if the
parameters were known.

Remark 4: It follows from Theorem 2 that in the presence of large
adaptive gain, the L1 adaptive controller and the system state approxi-
mate uref (t), xref (t). Therefore, y(t) approximates the output response

of the LTI system c (I− Ḡ(s)θ )−1G(s) to the input r(t); hence, its
transient performance specifications such as overshoot and settling time
can be derived for every value of θ. If we further minimize λ or ‖h3‖L∞ ,
it follows from Lemma 7 that y(t) approximates the output response
of the LTI system C(s)c Ho (s) to the input signal r(t). In this case,
the L1 adaptive controller leads to uniform transient performance of
y(t) independent of the value of the unknown parameter θ. For the
resulting L1 adaptive control signal, one can characterize the transient
specifications such as its amplitude and rate change for every θ ∈ Ω,
using udes (t).

Remark 5: We use a scalar system to compare the performance
of the L1 adaptive controller and a linear high-gain controller. Let
ẋ(t) = − θx(t) + u(t), where θ ∈ [θm in , θm ax ]. Let u(t) = − kx(t)
+ kr(t), leading to ẋ(t) = (−θ − k)x(t) + kr(t). We need to choose
k > −θm in to guarantee stability. We note that both the steady-
state error and the transient performance depend on the unknown
parameter value θ. By further introducing a proportional-integral
controller, one can achieve zero steady-state error. If one chooses
k ! max{|θm ax |, |θm in |}, it leads to x(s) = [k/(s− (−θ − k))]
r(s) ≈ [k/(s + k)]r(s). To apply the L1 adaptive controller, let the
desired reference system be 2/(s + 2). Let u1 = −2x, kg = 2, lead-
ing to Ho (s) = 1/(s + 2). Choosing C(s) = ωn /(s + ωn ) with large
ωn , and setting the adaptive gain Γ large, it follows
from (17) that x(s) ≈ xref (s) ≈ C(s)kg Ho (s)r(s) ≈ [ωn /(s + ωn )]
[2/(s + 2)]r(s) ≈ [2/(s + 2)]r(s), u(s) ≈ uref (s) = (−2 + θ)xref

(s) + 2r(s). The first of these relationships implies that the control
objective is met, while the second one states that L1 adaptive con-
troller approximates uref (t), which cancels θ.

VII. SIMULATIONS

Let A = [
0 1

−1 −1.4
], b = [0 1] , c = [1 0] , θ = [4 − 4.5] 

in (2), and let Ω = {θ1 ∈ [−10, 10], θ2 ∈ [−10, 10]}. Letting K = 0,
Γ = 10 000, we implement the controller following (3), (5), (6), and
(7). Then, θm ax = 20, while ‖Ḡ(s)‖L1 can be calculated numerically.
In Fig. 1(a), we plot λ1 = ‖Ḡ(s)‖L1 θm ax with respect to ω, and notice
that for ω > 30, we have λ1 < 1. Choosing C(s) = 160/(s + 160)
gives λ1 = ‖Ḡ(s)‖L1 θm ax = 0.1725 < 1, which leads to improved
performance bounds in (20)–(22). The simulation results of the L1

adaptive controller are shown in Fig. 2(a) and (b) for reference inputs
r = 25, 100, 400. We note that it leads to scaled control inputs and
scaled system outputs for scaled reference inputs. Fig. 3(a) and (b)
shows the performance for r(t) = 100 cos (0.2t), without any retuning
of the controller. We note that θ̂ (t)x(t)− θ x(t) is a signal containing
high-frequency harmonics and with zero dc component.
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Fig. 2. Performance of L1 adaptive controller with C(s) = 160/(s + 160) for r = 25, 100, 400. (a) y(t) (solid) and r(t) (dashed). (b) Time-history of u(t).

Fig. 3. Performance of L1 adaptive controller with C(s) = 160/(s + 160) for r = 100 cos (0.2t). (a) y(t) (solid) and r(t) (dashed). (b) Time-history of u(t).

Fig. 4. Performance of L1 adaptive controller with C(s) = [7500 s + 503 ]/(s + 50)3 for r = 25, 100, 400. (a) y(t) (solid) and r(t) (dashed). (b) Time-history
of u(t).

Next, let

Γ = 400 C(s) =
3ω2s + ω3

(s + ω)3 . (25)

In Fig. 1(b), we plot λ2 = ‖Ḡ(s)‖L1 θm ax and notice that for ω > 25,
we have λ2 < 1. Letting ω = 50 leads to λ2 = 0.3984. The sim-
ulation results are shown in Fig. 4(a) and (b) for reference inputs
r = 25, 100, 400, which are again scaled for scaled reference inputs.

This example points out that with a higher order filter C(s), one
could use relatively small adaptive gain. While a rigorous relationship
between the choice of the adaptive gain and the order of the filter can-
not be derived, an insight into this can be gained from the following
analysis. It follows from (2), (3), and (7) that x(s) = G(s)r(s)−

Ho (s)θ x(s) + Ho (s)C(s)r̄(s) + (sI−Am )−1x0 , while the state
predictor can be rewritten as x̂(s) = G(s)r(s) + Ho (s)(C(s)−
1)r̄(s) + (sI−Am )−1x0 . We note that the low-frequency compo-
nent C(s)r̄(s) is the input to the system, while the complementary
high-frequency component (1 − C(s))r̄(s) goes into the state predic-
tor. If the bandwidth of C(s) is large, then it can suppress only the
high frequencies in r̄(t), which appear only in the presence of large
adaptive gain. A properly designed higher order C(s) can be more
effective to serve the purpose of filtering with reduced tailing effects,
and hence, can generate similar λ with smaller bandwidth. This further
implies that similar performance can be achieved with smaller adaptive
gain.
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VIII. CONCLUSION

A novel adaptive control architecture is presented that leads to uni-
form transient response for a system’s both signals simultaneously. Its
performance bounds with respect to a reference LTI system imply that
by increasing the adaptation gain, one can achieve scaled response for
the system’s both signals simultaneously. This consequently holds the
promise for development of theoretically justified tools for the verifi-
cation and validation of adaptive systems.
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Robust Feedback Control for a Class of Uncertain
MIMO Nonlinear Systems

Jian Chen, A. Behal, and D. M. Dawson

Abstract—In this paper, a continuous feedback tracking controller is
developed for a class of high-order multi-input multi-output (MIMO) non-
linear systems with an input gain matrix that has nonzero leading principal
minors but can be nonsymmetric. Under the mild assumption that the signs
of the leading minors of the control input gain matrix are known, the con-
troller yields locally uniformly ultimately bounded (UUB) tracking while
compensating for unstructured uncertainty in both the drift vector and the
input matrix. First, a full-state feedback controller is designed based on
limited assumptions on the structure of the system nonlinearities, and the
singularity-free controller is proven to yield locally UUB tracking through
a Lyapunov-based analysis. Then, it is shown that an output feedback con-
trol can be designed based on a high-gain observer. Simulation results are
provided to illustrate the performance of the proposed control algorithm.

Index Terms—Lyapunov analysis, MIMO systems, nonlinear control,
output feedback control, robust control.

I. MODEL DEVELOPMENT

We consider a class of multi-input multi-output (MIMO) nonlinear
systems having the form [16]

x(n ) = h(x) + G(x)u (1)

where x(i) ∈ R
m , i = 0, 1, . . . , n − 1 are the system states, x

�
= [xT

ẋT · · · (x(n−1) )T ]T ∈ R
m n , u(t) ∈ R

m represents the control input,
and h (x) ∈ R

m and G (x) ∈ R
m×m are uncertain C2 nonlinearities.

We assume that G (x) is a real matrix with nonzero leading prin-
cipal minors. Based on [4] and [11], the real matrix G (x) can be
decomposed as G (x) = S (x) DU (x) where S (x) ∈ R

m×m is sym-
metric positive definite, U (x) ∈ R

m×m is unity upper triangular, and

D
�
= diag {sgn (d1 ) , sgn (d2 ) , . . . , sgn (dm )} ∈ R

m×m is a diagonal

matrix with diagonal entries +1 or−1 where d1
�
= �1 , di

�
= �i /�i−1

∀ i = 2, 3, . . . , m, and�1 ,�2 , . . . ,�m are leading principal minors
of G (x). For control design purposes, we assume that D is known.

After time differentiating (1), the following expression can be
obtained

x(n +1) = ϕ(x, x(n ) ) + G(x)u̇ (2)

where ϕ(x, x(n ) ) ∈ R
m is defined as follows:

ϕ(x, x(n ) )
�
= ḣ(x) + Ġ(x)G−1 (x)(x(n ) − h(x)).

Invoking the matrix decomposition property, (2) can be rewritten as

M (x)x(n +1) = f (x, x(n ) ) + DU (x)u̇ (3)
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