
function [x0,y0,iout,jout] = intersections(x1,y1,x2,y2,robust( 

%INTERSECTIONS Intersections of curves. 

   %Computes the (x,y) locations where two curves intersect.  The curves 

   %can be broken with NaNs or have vertical segments. 

% 

 %Example: 

[   %X0,Y0] = intersections(X1,Y1,X2,Y2,ROBUST;) 

% 

 %where X1 and Y1 are equal-length vectors of at least two points and 

 %represent curve 1.  Similarly, X2 and Y2 represent curve 2. 

 %X0 and Y0 are column vectors containing the points at which the two 

 %curves intersect. 

% 

 %ROBUST (optional) set to 1 or true means to use a slight variation of the 

 %algorithm that might return duplicates of some intersection points, and 

 %then remove those duplicates.  The default is true, but since the 

 %algorithm is slightly slower you can set it to false if you know that 

 %your curves don't intersect at any segment boundaries.  Also, the robust 

 %version properly handles parallel and overlapping segments. 

% 

 %The algorithm can return two additional vectors that indicate which 

 %segment pairs contain intersections and where they are: 

% 

[   %X0,Y0,I,J] = intersections(X1,Y1,X2,Y2,ROBUST;) 

% 

 %For each element of the vector I, I(k) = (segment number of (X1,Y1+ )) 

( %how far along this segment the intersection is).  For example, if I(k= ) 

 %45.25 then the intersection lies a quarter of the way between the line 



 %segment connecting (X1(45),Y1(45)) and (X1(46),Y1(46)).  Similarly for 

 %the vector J and the segments in (X2,Y2.) 

% 

 %You can also get intersections of a curve with itself.  Simply pass in 

 %only one curve, i.e,. 

% 

   %[ X0,Y0] = intersections(X1,Y1,ROBUST;) 

% 

 %where, as before, ROBUST is optional. 
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 %Theory of operation: 

% 

 %Given two line segments, L1 and L2, 

% 

   %L1 endpoints:  (x1(1),y1(1)) and (x1(2),y1(2)) 

   %L2 endpoints:  (x2(1),y2(1)) and (x2(2),y2(2)) 

% 

 %we can write four equations with four unknowns and then solve them.  The 

 %four unknowns are t1, t2, x0 and y0, where (x0,y0) is the intersection of 

 %L1 and L2, t1 is the distance from the starting point of L1 to the 

 %intersection relative to the length of L1 and t2 is the distance from the 

 %starting point of L2 to the intersection relative to the length of L2. 



% 

 %So, the four equations are 

% 

(    %x1(2) - x1(1))*t1 = x0 - x1(1) 

(    %x2(2) - x2(1))*t2 = x0 - x2(1) 

(    %y1(2) - y1(1))*t1 = y0 - y1(1) 

(    %y2(2) - y2(1))*t2 = y0 - y2(1) 

% 

 %Rearranging and writing in matrix form, 

% 

[  %x1(2)-x1(1)       0       -1   0;      [t1;      [-x1(1;) 

        %0       x2(2)-x2(1)  -1   0;   *   t2;   =   -x2(1;) 

   %y1(2)-y1(1)       0        0  -1;       x0;       -y1(1;) 

        %0       y2(2)-y2(1)   0  -1]       y0]       -y2(1]) 

% 

 %Let's call that A*T = B.  We can solve for T with T = A\B. 

% 

 %Once we have our solution we just have to look at t1 and t2 to determine 

 %whether L1 and L2 intersect.  If 0 <= t1 < 1 and 0 <= t2 < 1 then the two 

 %line segments cross and we can include (x0,y0) in the output. 

% 

 %In principle, we have to perform this computation on every pair of line 

 %segments in the input data.  This can be quite a large number of pairs so 

 %we will reduce it by doing a simple preliminary check to eliminate line 

 %segment pairs that could not possibly cross.  The check is to look at the 

 %smallest enclosing rectangles (with sides parallel to the axes) for each 

 %line segment pair and see if they overlap.  If they do then we have to 

 %compute t1 and t2 (via the A\B computation) to see if the line segments 



 %cross, but if they don't then the line segments cannot cross.  In a 

 %typical application, this technique will eliminate most of the potential 

 %line segment pairs. 

 

 

 %Input checks. 

error(nargchk(2,5,nargin)) 

 

 %Adjustments when fewer than five arguments are supplied. 

switch nargin 

 case 2 

  robust = true; 

  x2 = x1; 

  y2 = y1; 

  self_intersect = true; 

 case 3 

  robust = x2; 

  x2 = x1; 

  y2 = y1; 

  self_intersect = true; 

 case 4 

  robust = true; 

  self_intersect = false; 

 case 5 

  self_intersect = false; 

end 

 

 %x1 and y1 must be vectors with same number of points (at least 2.) 



if sum(size(x1) > 1) ~= 1 || sum(size(y1) > 1) ~= 1  ... ||  

  length(x1) ~= length(y1) 

 error('X1 and Y1 must be equal-length vectors of at least 2 points)'. 

end 

 %x2 and y2 must be vectors with same number of points (at least 2.) 

if sum(size(x2) > 1) ~= 1 || sum(size(y2) > 1) ~= 1  ... ||  

  length(x2) ~= length(y2) 

 error('X2 and Y2 must be equal-length vectors of at least 2 points)'. 

end 

 

 

 %Force all inputs to be column vectors. 

x1 = x1;):( 

y1 = y1;):( 

x2 = x2;):( 

y2 = y2;):( 

 

 %Compute number of line segments in each curve and some differences we'll 

 %need later. 

n1 = length(x1) - 1; 

n2 = length(x2) - 1; 

xy1 = [x1 y1;] 

xy2 = [x2 y2;] 

dxy1 = diff(xy1;) 

dxy2 = diff(xy2;) 

 

 %Determine the combinations of i and j where the rectangle enclosing the 

 %i'th line segment of curve 1 overlaps with the rectangle enclosing the 



 %j'th line segment of curve 2. 

[i,j] = find(repmat(min(x1(1:end-1),x1(2:end)),1,n2... =< ) 

 repmat(max(x2(1:end-1),x2(2:end)).',n1,1... & ) 

 repmat(max(x1(1:end-1),x1(2:end)),1,n2... => ) 

 repmat(min(x2(1:end-1),x2(2:end)).',n1,1... & ) 

 repmat(min(y1(1:end-1),y1(2:end)),1,n2... =< ) 

 repmat(max(y2(1:end-1),y2(2:end)).',n1,1... & ) 

 repmat(max(y1(1:end-1),y1(2:end)),1,n2... => ) 

 repmat(min(y2(1:end-1),y2(2:end)).',n1,1;)) 

 

 %Force i and j to be column vectors, even when their length is zero, i.e,. 

 %we want them to be 0-by-1 instead of 0-by-0. 

i = reshape(i,[],1;) 

j = reshape(j,[],1;) 

 

 %Find segments pairs which have at least one vertex = NaN and remove them. 

 %This line is a fast way of finding such segment pairs.  We take 

 %advantage of the fact that NaNs propagate through calculations, in 

 %particular subtraction (in the calculation of dxy1 and dxy2, which we 

 %need anyway) and addition. 

 %At the same time we can remove redundant combinations of i and j in the 

 %case of finding intersections of a line with itself. 

if self_intersect 

 remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2)) | j <= i + 1; 

else 

 remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2;)) 

end 



i(remove;][ = ) 

j(remove;][ = ) 

 

 %Initialize matrices.  We'll put the T's and B's in matrices and use them 

 %one column at a time.  AA is a 3-D extension of A where we'll use one 

 %plane at a time. 

n = length(i;) 

T = zeros(4,n;) 

AA = zeros(4,4,n;) 

AA([1 2],3,:) = -1; 

AA([3 4],4,:) = -1; 

AA([1 3],1,:) = dxy1(i;'.):, 

AA([2 4],2,:) = dxy2(j;'.):, 

B = -[x1(i) x2(j) y1(i) y2(j;'.]) 

 

 %Loop through possibilities.  Trap singularity warning and then use 

 %lastwarn to see if that plane of AA is near singular.  Process any such 

 %segment pairs to determine if they are colinear (overlap) or merely 

 %parallel.  That test consists of checking to see if one of the endpoints 

 %of the curve 2 segment lies on the curve 1 segment.  This is done by 

 %checking the cross product 

% 

(   %x1(2),y1(2)) - (x1(1),y1(1)) x (x2(2),y2(2)) - (x1(1),y1(1.)) 

% 

 %If this is close to zero then the segments overlap. 

 

 %If the robust option is false then we assume no two segment pairs are 

 %parallel and just go ahead and do the computation.  If A is ever singular 



 %a warning will appear.  This is faster and obviously you should use it 

 %only when you know you will never have overlapping or parallel segment 

 %pairs. 

 

if robust 

 overlap = false(n,1;) 

 warning_state = warning('off','MATLAB:singularMatrix;)' 

  %Use try-catch to guarantee original warning state is restored. 

 try 

  lastwarn)''( 

  for k = 1:n 

   T(:,k) = AA(:,:,k)\B(:,k;) 

   [unused,last_warn] = lastwarn; 

   lastwarn)''( 

   if strcmp(last_warn,'MATLAB:singularMatrix)' 

     %Force in_range(k) to be false. 

    T(1,k) = NaN; 

     %Determine if these segments overlap or are just parallel. 

    overlap(k) = rcond([dxy1(i(k),:);xy2(j(k),:) - xy1(i(k),:)]) < eps; 

   end 

  end 

  warning(warning_state) 

 catch err 

  warning(warning_state) 

  rethrow(err) 

 end 

  %Find where t1 and t2 are between 0 and 1 and return the corresponding 



  %x0 and y0 values. 

 in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) <= 1 & T(2,:) <= 1;'.) 

  %For overlapping segment pairs the algorithm will return an 

  %intersection point that is at the center of the overlapping region. 

 if any(overlap) 

  ia = i(overlap;) 

  ja = j(overlap;) 

   %set x0 and y0 to middle of overlapping region. 

  T(3,overlap) = (max(min(x1(ia),x1(ia+1)),min(x2(ja),x2(ja+1... + ))) 

   min(max(x1(ia),x1(ia+1)),max(x2(ja),x2(ja+1)))).'/2; 

  T(4,overlap) = (max(min(y1(ia),y1(ia+1)),min(y2(ja),y2(ja+1... + ))) 

   min(max(y1(ia),y1(ia+1)),max(y2(ja),y2(ja+1)))).'/2; 

  selected = in_range | overlap; 

 else 

  selected = in_range; 

 end 

 xy0 = T(3:4,selected;'.) 

  

  %Remove duplicate intersection points. 

 [xy0,index] = unique(xy0,'rows;)' 

 x0 = xy0(:,1;) 

 y0 = xy0(:,2;) 

  

  %Compute how far along each line segment the intersections are. 

 if nargout > 2 

  sel_index = find(selected;) 

  sel = sel_index(index;) 



  iout = i(sel) + T(1,sel;'.) 

  jout = j(sel) + T(2,sel;'.) 

 end 

else % non-robust option 

 for k = 1:n 

  [L,U] = lu(AA(:,:,k;)) 

  T(:,k) = U\(L\B(:,k;)) 

 end 

  

  %Find where t1 and t2 are between 0 and 1 and return the corresponding 

  %x0 and y0 values. 

 in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) < 1 & T(2,:) < 1;'.) 

 x0 = T(3,in_range;'.) 

 y0 = T(4,in_range;'.) 

  

  %Compute how far along each line segment the intersections are. 

 if nargout > 2 

  iout = i(in_range) + T(1,in_range;'.) 

  jout = j(in_range) + T(2,in_range;'.) 

 end 

end 

 

 %Plot the results (useful for debugging.) 

 %plot(x1,y1,x2,y2,x0,y0,'ok;)' 


