function [ $x 0, y 0$, iout, jout] = intersections( $x 1, y 1, x 2, y 2$, robust $)$
\%INTERSECTIONS Intersections of curves.
\%Computes the ( $\mathrm{x}, \mathrm{y}$ ) locations where two curves intersect. The curves
\%can be broken with NaNs or have vertical segments.

## \%

\%Example:
] \% XO, YO] = intersections(X1, Y1, X2, Y2, ROBUST; (
\%
\%where X 1 and Y 1 are equal-length vectors of at least two points and
\%represent curve 1. Similarly, X2 and Y2 represent curve 2.
$\% \mathrm{XO}$ and YO are column vectors containing the points at which the two \%curves intersect.
\%
\%ROBUST (optional) set to 1 or true means to use a slight variation of the
\%algorithm that might return duplicates of some intersection points, and
\%then remove those duplicates. The default is true, but since the
\%algorithm is slightly slower you can set it to false if you know that
\%your curves don't intersect at any segment boundaries. Also, the robust
\%version properly handles parallel and overlapping segments.
\%
\%The algorithm can return two additional vectors that indicate which
\%segment pairs contain intersections and where they are:
\%
] \%X0,YO,I,J] = intersections(X1,Y1, X2, Y2,ROBUST;(
\%
\%For each element of the vector $\mathrm{I}, \mathrm{I}(\mathrm{k})=$ (segment number of $(\mathrm{X} 1, \mathrm{Y} 1+(($
) \%how far along this segment the intersection is). For example, if I(k= (
$ケ \Delta / ケ \Delta \%$ then the intersection lies a quarter of the way between the line
\%segment connecting (X1(45),Y1(45)) and (X1(46),Y1(46)). Similarly for \%the vector J and the segments in (X2,Y2.(
\%
\%You can also get intersections of a curve with itself. Simply pass in
\%only one curve, i.e,.
\%
] \% $\mathrm{XO}, \mathrm{Y} 0$ ] = intersections(X1,Y1,ROBUST;(
\%
\%where, as before, ROBUST is optional.
\%Version: 1.12, 27 January 2010
\%Author: Douglas M. Schwarz
\%Email: dmschwarz=ieee*org, dmschwarz=urgrad*rochester*edu
\%Real_email = regexprep(Email(\{'.','@'\},\{'*','='\},
\%Theory of operation:
\%
\%Given two line segments, L1 and L2,
\%
\%L1 endpoints: $(x 1(1), y 1(1))$ and ( $x 1(2), y 1(2(($
\%L2 endpoints: $(x 2(1), y 2(1))$ and ( $x 2(2), y 2(2(($
\%
\%we can write four equations with four unknowns and then solve them. The
\%four unknowns are $t 1, \mathrm{t2}, \mathrm{x} 0$ and y 0 , where $(\mathrm{x} 0, \mathrm{y} 0)$ is the intersection of
\%L1 and L2, t1 is the distance from the starting point of L1 to the
\%intersection relative to the length of L 1 and t 2 is the distance from the
\%starting point of $L 2$ to the intersection relative to the length of $L 2$.

## \%

\%So, the four equations are
\%
) $\% \mathrm{x} 1(2)-\mathrm{x} 1(1))^{*} \mathrm{t} 1=\mathrm{x} 0-\mathrm{x} 1(1($
) $\% \times 2(2)-x 2(1))^{*}+2=x 0-x 2(1($
) $\% \mathrm{y} 1(2)-\mathrm{y} 1(1))^{*} \mathrm{t} 1=y 0-\mathrm{y} 1(1($
) $\% \mathrm{y} 2(2)-\mathrm{y} 2(1))^{*} \mathrm{t} 2=\mathrm{y} 0-\mathrm{y} 2(1($
\%
\%Rearranging and writing in matrix form,
\%
] \%x1(2)-x1(1) $0 \quad-1 \quad 0 ; \quad[t 1 ; \quad[-x 1(1 ;($

- $\quad \% \times 2(2)-\mathrm{x} 2(1)-1 \quad 0 ;{ }^{*} \mathrm{t} 2 ;=-x 2(1 ;($
$\% y 1(2)-\mathrm{y} 1(1) \quad 0 \quad 0-1 ; \quad x 0 ; \quad-y 1(1 ;($
- $\% y 2(2)-y 2(1) \quad 0-1] \quad y 0] \quad-y 2(1[($
\%
\%Let's call that $A * T=B$. We can solve for $T$ with $T=A \backslash B$.
\%
\%Once we have our solution we just have to look at t 1 and t 2 to determine
\%whether L 1 and L 2 intersect. If $0<=\mathrm{t} 1<1$ and $0<=\mathrm{t} 2<1$ then the two
\%line segments cross and we can include ( $\mathrm{x} 0, \mathrm{y} 0$ ) in the output.
\%
\%In principle, we have to perform this computation on every pair of line
\%segments in the input data. This can be quite a large number of pairs so \%we will reduce it by doing a simple preliminary check to eliminate line \%segment pairs that could not possibly cross. The check is to look at the \%smallest enclosing rectangles (with sides parallel to the axes) for each \%line segment pair and see if they overlap. If they do then we have to \%compute t 1 and t 2 (via the $\mathrm{A} \backslash \mathrm{B}$ computation) to see if the line segments
\%cross, but if they don't then the line segments cannot cross. In a \%typical application, this technique will eliminate most of the potential \%line segment pairs.
\%Input checks.
error(nargchk(2,5,nargin((
\%Adjustments when fewer than five arguments are supplied.
switch nargin
case 2
robust = true;
x2 = x1;
y2 = y1;
self_intersect = true;
case 3
robust $=x 2$;
$x 2=x 1$
y2 = y1;
self_intersect = true;
case 4
robust = true;
self_intersect = false;
case 5
self_intersect = false;
end
if sum $(\operatorname{size}(x 1)>1)^{\sim}=1| |$ sum $(\operatorname{size}(y 1)>1)^{\sim}=1 \ldots| |$
length(x1) ~= length(y1(
error('X1 and Y1 must be equal-length vectors of at least 2 points('.
end
$\% \times 2$ and y 2 must be vectors with same number of points (at least 2. (
if sum $(\operatorname{size}(x 2)>1)^{\sim}=1| |$ sum $(\operatorname{size}(y 2)>1)^{\sim}=1 \ldots| |$

$$
\text { length }(x 2) \sim=\text { length }(y 2(
$$

error('X2 and Y 2 must be equal-length vectors of at least 2 points('.
end
\%Force all inputs to be column vectors.
x1 = x1;(:)
y1 = y1;(:)
x2 = x2;(:)
y2 = y2;(:)
\%Compute number of line segments in each curve and some differences we'll
\%need later.
$\mathrm{n} 1=\operatorname{length}(\mathrm{x} 1)-1$;
n2 $=$ length $(\mathrm{x} 2)-1$;
xy1 = [x1 y1; [
$x y 2=[x 2 y 2 ;[$
dxy1 $=\operatorname{diff(xy1;(~}$
dxy2 $=$ diff(xy2;(
\%Determine the combinations of $i$ and $j$ where the rectangle enclosing the
\%i'th line segment of curve 1 overlaps with the rectangle enclosing the
\%j'th line segment of curve 2.

```
]i,j] = find(repmat(min(x1(1:end-1),x1(2:end)),1,n2... => (
    repmat(max(x2(1:end-1),x2(2:end)).',n1,1... & (
    repmat(max(x1(1:end-1),x1(2:end)),1,n2\ldots =< (
    repmat(min(x2(1:end-1),x2(2:end)).',n1,1... & (
    repmat(min}(\textrm{y}1(1:\mathrm{ end-1),y1(2:end)),1,n2... => (
    repmat(max(y2(1:end-1),y2(2:end)).',n1,1\ldots.. & (
    repmat(max(y1(1:end-1),y1(2:end)),1,n2\ldots=< (
    repmat(min(y2(1:end-1),y2(2:end)).',n1,1;((
```

\%Force $i$ and $j$ to be column vectors, even when their length is zero, i.e,.
\%we want them to be 0-by-1 instead of 0-by-0.
$\mathrm{i}=$ reshape $(\mathrm{i},[\mathrm{l}, 1 ;($
j = reshape(j,[],1; (
\%Find segments pairs which have at least one vertex $=\mathrm{NaN}$ and remove them.
\%This line is a fast way of finding such segment pairs. We take
\%advantage of the fact that NaNs propagate through calculations, in
\%particular subtraction (in the calculation of dxy1 and dxy2, which we
\%need anyway) and addition.
\%At the same time we can remove redundant combinations of $i$ and $j$ in the \%case of finding intersections of a line with itself.
if self_intersect

```
    remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2)) | j <= i + 1;
```

else
remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2;((
end

```
i(remove;[] = (
j(remove;[] = (
\%Initialize matrices. We'll put the T's and B's in matrices and use them
\%one column at a time. AA is a 3-D extension of A where we'll use one
\%plane at a time.
\(\mathrm{n}=\) length \((\mathrm{i} ;(\)
\(\mathrm{T}=\) zeros(4,n;(
AA \(=\) zeros(4,4,n;
AA([1 2],3,:) =-1;
AA ([3 4],4,:) = -1;
AA([1 3],1,:) = dxy1(i;'.:(:,
AA([2 4],2,:) = dxy2(j;'..(:,
\(B=-[x 1(i) x 2(j) y 1(i) y 2(j ; \cdot[(\)
\%Loop through possibilities. Trap singularity warning and then use \%lastwarn to see if that plane of AA is near singular. Process any such \%segment pairs to determine if they are colinear (overlap) or merely \%parallel. That test consists of checking to see if one of the endpoints \%of the curve 2 segment lies on the curve 1 segment. This is done by \%checking the cross product
\%
) \(\% x 1(2), y 1(2))-(x 1(1), y 1(1)) x(x 2(2), y 2(2))-(x 1(1), y 1(1 .((\)
\%
```

\%If this is close to zero then the segments overlap.
\%If the robust option is false then we assume no two segment pairs are \%parallel and just go ahead and do the computation. If A is ever singular
\%a warning will appear. This is faster and obviously you should use it \%only when you know you will never have overlapping or parallel segment \%pairs.
if robust

```
overlap = false(n,1;(
warning_state = warning('off','MATLAB:singularMatrix;('
    %Use try-catch to guarantee original warning state is restored.
    try
        lastwarn(")
        for k=1:n
            T(:,k) = AA(:,,,k)\B(:,k;(
                ]unused,last_warn] = lastwarn;
                lastwarn(")
                if strcmp(last_warn,'MATLAB:singularMatrix('
                %Force in_range(k) to be false.
                T(1,k) = NaN;
                    %Determine if these segments overlap or are just parallel.
                        overlap(k) = rcond([dxy1(i(k),:);xy2(j(k),:) - xy1(i(k),:)]) < eps;
                end
            end
            warning(warning_state(
    catch err
        warning(warning_state(
            rethrow(err(
end
\%Find where t 1 and t 2 are between 0 and 1 and return the corresponding
```

\%x0 and y0 values.
in_range = (T(1,:) >= 0 \& $T(2,:)>=0$ \& $T(1,:)<=1 \& T(2,:)<=1 ; ' .($
\%For overlapping segment pairs the algorithm will return an
\%intersection point that is at the center of the overlapping region.
if any(overlap(
$\mathrm{ia}=\mathrm{i}($ overlap; $($ ja = j(overlap; (
\%set x 0 and y 0 to middle of overlapping region.
$\mathrm{T}(3, \mathrm{overlap})=(\max (\min (x 1(\mathrm{ia}), x 1(\mathrm{ia}+1)), \min (x 2(\mathrm{ja}), \mathrm{x} 2(\mathrm{ja}+1 \ldots+((($
$\min (\max (x 1(i a), x 1(i a+1)), \max (x 2(j a), x 2(j a+1)))) \cdot ' / 2 ;$
$\mathrm{T}(4, \mathrm{overlap})=(\max (\min (\mathrm{y} 1(\mathrm{ia}), \mathrm{y} 1(\mathrm{ia}+1)), \min (\mathrm{y} 2(\mathrm{ja}), \mathrm{y} 2(\mathrm{ja}+1 \ldots+((($
$\min (\max (y 1(i a), y 1(i a+1)), \max (y 2(j a), y 2(j a+1)))) \cdot ' / 2 ;$
selected = in_range | overlap;
else

```
        selected = in_range;
```

end
xy0 = T(3:4,selected;'. (
\%Remove duplicate intersection points.
]xy0,index] = unique(xy0,'rows;('
$x 0=x y 0(:, 1 ;($
$y 0=x y 0(:, 2 ;($
\%Compute how far along each line segment the intersections are.
if nargout > 2
sel_index = find(selected;(
sel = sel_index(index;(

$$
\begin{aligned}
& \text { iout }=\mathrm{i}(\text { sel })+\mathrm{T}(1, \text { sel;'. }( \\
& \text { jout }=\mathrm{j}(\text { sel })+\mathrm{T}(2, \text { sel;'. }
\end{aligned}
$$

end
else \% non-robust option

$$
\begin{aligned}
& \text { for } k=1: n \\
& \qquad \begin{array}{l}
\mathrm{TL}, \mathrm{U}]=\operatorname{lu}(\mathrm{AA}(:,:, \mathrm{k} ;((\mathrm{C} \\
\mathrm{T}(:, \mathrm{k})=\mathrm{U} \backslash(\mathrm{~L} \backslash \mathrm{~B}(:, \mathrm{k} ;((\mathrm{l}
\end{array} \\
& \text { end }
\end{aligned}
$$

\%Find where t1 and t2 are between 0 and 1 and return the corresponding $\% x 0$ and y0 values.

```
in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:)<1 & T(2,:) < 1;'.(
x0 = T(3,in_range;'.(
y0 = T(4,in_range;'.(
```

\%Compute how far along each line segment the intersections are.
if nargout > 2
iout $=i($ in_range $)+T(1$, in_range;' . (
jout $=j$ (in_range) $+T(2$,in_range;'. (
end
end
\%Plot the results (useful for debugging.(
\%plot(x1,y1,x2,y2,x0,y0,'ok;('

