
function [x0,y0,iout,jout] = intersections(x1,y1,x2,y2,robust(

%INTERSECTIONS Intersections of curves.

 %Computes the (x,y) locations where two curves intersect. The curves

 %can be broken with NaNs or have vertical segments.

%

 %Example:

[%X0,Y0] = intersections(X1,Y1,X2,Y2,ROBUST;)

%

 %where X1 and Y1 are equal-length vectors of at least two points and

 %represent curve 1. Similarly, X2 and Y2 represent curve 2.

 %X0 and Y0 are column vectors containing the points at which the two

 %curves intersect.

%

 %ROBUST (optional) set to 1 or true means to use a slight variation of the

 %algorithm that might return duplicates of some intersection points, and

 %then remove those duplicates. The default is true, but since the

 %algorithm is slightly slower you can set it to false if you know that

 %your curves don't intersect at any segment boundaries. Also, the robust

 %version properly handles parallel and overlapping segments.

%

 %The algorithm can return two additional vectors that indicate which

 %segment pairs contain intersections and where they are:

%

[%X0,Y0,I,J] = intersections(X1,Y1,X2,Y2,ROBUST;)

%

 %For each element of the vector I, I(k) = (segment number of (X1,Y1+))

(%how far along this segment the intersection is). For example, if I(k=)

 %45.25 then the intersection lies a quarter of the way between the line

 %segment connecting (X1(45),Y1(45)) and (X1(46),Y1(46)). Similarly for

 %the vector J and the segments in (X2,Y2.)

%

 %You can also get intersections of a curve with itself. Simply pass in

 %only one curve, i.e,.

%

 %[X0,Y0] = intersections(X1,Y1,ROBUST;)

%

 %where, as before, ROBUST is optional.

 %Version: 1.12, 27 January 2010

 %Author: Douglas M. Schwarz

 %Email: dmschwarz=ieee*org, dmschwarz=urgrad*rochester*edu

 %Real_email = regexprep(Email '.','@'{,}'*','='{,)}

 %Theory of operation:

%

 %Given two line segments, L1 and L2,

%

 %L1 endpoints: (x1(1),y1(1)) and (x1(2),y1(2))

 %L2 endpoints: (x2(1),y2(1)) and (x2(2),y2(2))

%

 %we can write four equations with four unknowns and then solve them. The

 %four unknowns are t1, t2, x0 and y0, where (x0,y0) is the intersection of

 %L1 and L2, t1 is the distance from the starting point of L1 to the

 %intersection relative to the length of L1 and t2 is the distance from the

 %starting point of L2 to the intersection relative to the length of L2.

%

 %So, the four equations are

%

(%x1(2) - x1(1))*t1 = x0 - x1(1)

(%x2(2) - x2(1))*t2 = x0 - x2(1)

(%y1(2) - y1(1))*t1 = y0 - y1(1)

(%y2(2) - y2(1))*t2 = y0 - y2(1)

%

 %Rearranging and writing in matrix form,

%

[%x1(2)-x1(1) 0 -1 0; [t1; [-x1(1;)

 %0 x2(2)-x2(1) -1 0; * t2; = -x2(1;)

 %y1(2)-y1(1) 0 0 -1; x0; -y1(1;)

 %0 y2(2)-y2(1) 0 -1] y0] -y2(1])

%

 %Let's call that A*T = B. We can solve for T with T = A\B.

%

 %Once we have our solution we just have to look at t1 and t2 to determine

 %whether L1 and L2 intersect. If 0 <= t1 < 1 and 0 <= t2 < 1 then the two

 %line segments cross and we can include (x0,y0) in the output.

%

 %In principle, we have to perform this computation on every pair of line

 %segments in the input data. This can be quite a large number of pairs so

 %we will reduce it by doing a simple preliminary check to eliminate line

 %segment pairs that could not possibly cross. The check is to look at the

 %smallest enclosing rectangles (with sides parallel to the axes) for each

 %line segment pair and see if they overlap. If they do then we have to

 %compute t1 and t2 (via the A\B computation) to see if the line segments

 %cross, but if they don't then the line segments cannot cross. In a

 %typical application, this technique will eliminate most of the potential

 %line segment pairs.

 %Input checks.

error(nargchk(2,5,nargin))

 %Adjustments when fewer than five arguments are supplied.

switch nargin

 case 2

 robust = true;

 x2 = x1;

 y2 = y1;

 self_intersect = true;

 case 3

 robust = x2;

 x2 = x1;

 y2 = y1;

 self_intersect = true;

 case 4

 robust = true;

 self_intersect = false;

 case 5

 self_intersect = false;

end

 %x1 and y1 must be vectors with same number of points (at least 2.)

if sum(size(x1) > 1) ~= 1 || sum(size(y1) > 1) ~= 1 ... ||

 length(x1) ~= length(y1)

 error('X1 and Y1 must be equal-length vectors of at least 2 points)'.

end

 %x2 and y2 must be vectors with same number of points (at least 2.)

if sum(size(x2) > 1) ~= 1 || sum(size(y2) > 1) ~= 1 ... ||

 length(x2) ~= length(y2)

 error('X2 and Y2 must be equal-length vectors of at least 2 points)'.

end

 %Force all inputs to be column vectors.

x1 = x1;):(

y1 = y1;):(

x2 = x2;):(

y2 = y2;):(

 %Compute number of line segments in each curve and some differences we'll

 %need later.

n1 = length(x1) - 1;

n2 = length(x2) - 1;

xy1 = [x1 y1;]

xy2 = [x2 y2;]

dxy1 = diff(xy1;)

dxy2 = diff(xy2;)

 %Determine the combinations of i and j where the rectangle enclosing the

 %i'th line segment of curve 1 overlaps with the rectangle enclosing the

 %j'th line segment of curve 2.

[i,j] = find(repmat(min(x1(1:end-1),x1(2:end)),1,n2... =<)

 repmat(max(x2(1:end-1),x2(2:end)).',n1,1... &)

 repmat(max(x1(1:end-1),x1(2:end)),1,n2... =>)

 repmat(min(x2(1:end-1),x2(2:end)).',n1,1... &)

 repmat(min(y1(1:end-1),y1(2:end)),1,n2... =<)

 repmat(max(y2(1:end-1),y2(2:end)).',n1,1... &)

 repmat(max(y1(1:end-1),y1(2:end)),1,n2... =>)

 repmat(min(y2(1:end-1),y2(2:end)).',n1,1;))

 %Force i and j to be column vectors, even when their length is zero, i.e,.

 %we want them to be 0-by-1 instead of 0-by-0.

i = reshape(i,[],1;)

j = reshape(j,[],1;)

 %Find segments pairs which have at least one vertex = NaN and remove them.

 %This line is a fast way of finding such segment pairs. We take

 %advantage of the fact that NaNs propagate through calculations, in

 %particular subtraction (in the calculation of dxy1 and dxy2, which we

 %need anyway) and addition.

 %At the same time we can remove redundant combinations of i and j in the

 %case of finding intersections of a line with itself.

if self_intersect

 remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2)) | j <= i + 1;

else

 remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2;))

end

i(remove;][=)

j(remove;][=)

 %Initialize matrices. We'll put the T's and B's in matrices and use them

 %one column at a time. AA is a 3-D extension of A where we'll use one

 %plane at a time.

n = length(i;)

T = zeros(4,n;)

AA = zeros(4,4,n;)

AA([1 2],3,:) = -1;

AA([3 4],4,:) = -1;

AA([1 3],1,:) = dxy1(i;'.):,

AA([2 4],2,:) = dxy2(j;'.):,

B = -[x1(i) x2(j) y1(i) y2(j;'.])

 %Loop through possibilities. Trap singularity warning and then use

 %lastwarn to see if that plane of AA is near singular. Process any such

 %segment pairs to determine if they are colinear (overlap) or merely

 %parallel. That test consists of checking to see if one of the endpoints

 %of the curve 2 segment lies on the curve 1 segment. This is done by

 %checking the cross product

%

(%x1(2),y1(2)) - (x1(1),y1(1)) x (x2(2),y2(2)) - (x1(1),y1(1.))

%

 %If this is close to zero then the segments overlap.

 %If the robust option is false then we assume no two segment pairs are

 %parallel and just go ahead and do the computation. If A is ever singular

 %a warning will appear. This is faster and obviously you should use it

 %only when you know you will never have overlapping or parallel segment

 %pairs.

if robust

 overlap = false(n,1;)

 warning_state = warning('off','MATLAB:singularMatrix;)'

 %Use try-catch to guarantee original warning state is restored.

 try

 lastwarn)''(

 for k = 1:n

 T(:,k) = AA(:,:,k)\B(:,k;)

 [unused,last_warn] = lastwarn;

 lastwarn)''(

 if strcmp(last_warn,'MATLAB:singularMatrix)'

 %Force in_range(k) to be false.

 T(1,k) = NaN;

 %Determine if these segments overlap or are just parallel.

 overlap(k) = rcond([dxy1(i(k),:);xy2(j(k),:) - xy1(i(k),:)]) < eps;

 end

 end

 warning(warning_state)

 catch err

 warning(warning_state)

 rethrow(err)

 end

 %Find where t1 and t2 are between 0 and 1 and return the corresponding

 %x0 and y0 values.

 in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) <= 1 & T(2,:) <= 1;'.)

 %For overlapping segment pairs the algorithm will return an

 %intersection point that is at the center of the overlapping region.

 if any(overlap)

 ia = i(overlap;)

 ja = j(overlap;)

 %set x0 and y0 to middle of overlapping region.

 T(3,overlap) = (max(min(x1(ia),x1(ia+1)),min(x2(ja),x2(ja+1... +)))

 min(max(x1(ia),x1(ia+1)),max(x2(ja),x2(ja+1)))).'/2;

 T(4,overlap) = (max(min(y1(ia),y1(ia+1)),min(y2(ja),y2(ja+1... +)))

 min(max(y1(ia),y1(ia+1)),max(y2(ja),y2(ja+1)))).'/2;

 selected = in_range | overlap;

 else

 selected = in_range;

 end

 xy0 = T(3:4,selected;'.)

 %Remove duplicate intersection points.

 [xy0,index] = unique(xy0,'rows;)'

 x0 = xy0(:,1;)

 y0 = xy0(:,2;)

 %Compute how far along each line segment the intersections are.

 if nargout > 2

 sel_index = find(selected;)

 sel = sel_index(index;)

 iout = i(sel) + T(1,sel;'.)

 jout = j(sel) + T(2,sel;'.)

 end

else % non-robust option

 for k = 1:n

 [L,U] = lu(AA(:,:,k;))

 T(:,k) = U\(L\B(:,k;))

 end

 %Find where t1 and t2 are between 0 and 1 and return the corresponding

 %x0 and y0 values.

 in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) < 1 & T(2,:) < 1;'.)

 x0 = T(3,in_range;'.)

 y0 = T(4,in_range;'.)

 %Compute how far along each line segment the intersections are.

 if nargout > 2

 iout = i(in_range) + T(1,in_range;'.)

 jout = j(in_range) + T(2,in_range;'.)

 end

end

 %Plot the results (useful for debugging.)

 %plot(x1,y1,x2,y2,x0,y0,'ok;)'

